
Theory and Implementation of Numerical Methods Based on
Runge-Kutta Integration f or Solving Optimal Control Problems

by

Adam Lowell Schwartz

S.B. (Massachusetts Institute of Technology) 1989
S.M. (Massachusetts Institute of Technology) 1989

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering—

Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Elijah Polak, Chair
Professor James W. Demmel
Professor Shankar Sastry
Professor Andrew K. Packard

1996

Theory and Implementation of Numerical Methods
Based on Runge-Kutta Integration f or Solving

Optimal Contr ol Problems

Copyright © 1996

by

Adam Lowell Schwartz

Abstract

THEORY AND IMPLEMENT ATION OF NUMERICAL METHODS B ASED

ON RUNGE-KUTTA I NTEGRATION FOR SOLVING OPTIMAL CONTR OL PROBLEMS

by

Adam Lowell Schwartz

Doctor of Philosophy in Electrical Engineering

University of California at Berkeley

Professor Elijah Polak, Chair

This dissertation presents theory and implementations of numerical methods for accurately

and efficiently solving optimal control problems.The methods we consider are based on solving

a sequence of discrete-time optimal control problems obtained using explicit, fixed step-size

Runge-Kutta integration and finite-dimensional B-spline control parameterizations to discretize

the optimal control problem under consideration.Other discretization methods such as Euler’s

method, collocation techniques, or numerical implementations, using variable step-size numerical

integration, of specialized optimal control algorithms are less accurate and efficient than dis-

cretization by explicit, fixed step-size Runge-Kutta for many problems. Thiswork presents the

first theoretical foundation for Runge-Kutta discretization.The theory provides conditions on the

Runge-Kutta parameters that ensure that the discrete-time optimal control problems are consistent

approximations to the original problem.

Additionally, we derive a number of results which help in the efficient numerical implemen-

tation of this theory. These include methods for refining the discretization mesh, formulas for

computing estimates of integration errors and errors of numerical solutions obtained for optimal

control problems, and a method for dealing with oscillations that arise in the numerical solution

of singular optimal control problems.These results are of great practical importance in solving

optimal control problems.

We also present, and prove convergence results for, a family of numerical optimization algo-

rithms for solving a class of optimization problems that arise from the discretization of optimal

control problems with control bounds.This family of algorithms is based upon a projection oper-

ator and a decomposition of search directions into two parts: one part for the unconstrained sub-

space and another for the constrained subspace.This decomposition allows the correct active

- 1 -

constraint set to be rapidly identified and the rate of convergence properties associated with an

appropriate unconstrained search direction, such as those produced by a limited memory quasi-

Newton or conjugate-gradient method, to be realized for the constrained problem.The algorithm

is extremely efficient and can readily solve problems involving thousands of decision variables.

The theory we have dev eloped provides the foundation for our software package RIOTS.

This is a group of programs and utilities, written mostly in C and designed as a toolbox for Mat-

lab, that provides an interactive environment for solving a very broad class of optimal control

problems. Amanual describing the use and operation of RIOTS is included in this dissertation.

We believe RIOTS to be one of the most accurate and efficient programs currently available for

solving optimal control problems.

Professor Elijah Polak

Dissertation Committee Chair

- ii -

For Mom and Dad

We are generally the better persuaded by the reasons we dis-
cover ourselves than by those given to us by others.

— Marcel Proust

You never work so hard as when you’re not being paid for it.
— George Burns

There are three types of people in this world:
Those that are good at math—and those that aren’t.

- iii -

Acknowledgments

The work in this thesis would not have been possible without the invaluable discussions I

have had with several individuals. Theseindividuals, all of whom were very generous with their

time, include Prof. Dimitri Bertsekas, Dr. John Betts, Prof. Larry Biegler, Prof. Carl de Boor,

Prof. Asen Dontchev, Prof. Joseph Dunn, Prof. Roger Fletcher, Prof. William Hager, Dr. Craig

Lawrence, Prof. Roger Sargent, Prof. Michael Saunders, Dr. Oskar Von Stryk, Prof. Andre´ Tits,

Dr. Stephen Wright and the helpful engineers at the Mathworks. Also,for sharing with me their

programming expertise, I wish to thank my fellow graduate students Steve Burgett and Raja

Kadiyala. Two other fellow graduate students, Neil Getz and Shahram Shahruz, deserve mention

for the enjoyable time I spent with them discussing and formulating ideas.Thanks also go to

Prof. Ron Fearing for keeping me employed as an instructor for Signals and Systems.

For the gritty details of administration, the Cory Hall staff, particularly Dianna Bolt, Mary

Byrnes, Chris Colbert, Tito Gatchalian, Heather Levien, Flora Oviedo, and Mary Stewart enor-

mously simplified my life at Berkeley. There is no overstating the importance of their help.

I would like to reserve special acknowledgment for: Carlos Kirjner (my officemate with

whom I spent most of my hours) for answering questions on topics ranging from functional anal-

ysis to topology to optimization; Prof. Shankar Sastry who provided access to the computer

equipment I used for developing my software as well as encouragement and a willingness to

become involved in a subject that is removed from his usual area of interest; Prof. James Demmel

who sparked my interest in numerical integration and is responsible for my understanding of

numerical integration methods; Prof. Andrew Packard, a colleague whose approach to academia

is refreshing and stimulating—I have thouroughly enjoyed knowing and working with Andy; and

most importantly, my advisor and mentor, Prof. Polak. The work described in this thesis is the

result of my collaboration with Prof. Polak and any signs of excellence that may be contained

herein are due to the high level of quality that he demanded of me.His insistence on perfection

was relentless and often painful.But his commitment to quality will serve as a guide for the rest

of my life. I am grateful for his deep involvement in my work.

Finally, I am glad to mention the people in my personal life that made the endless hours of

work on this dissertation tolerable.These are my parents Stan and Helene, my brother John and

his wife Carrie (and their brand-new daughter Rebecca), my sister Melissa, my grandparents Ben-

jamin, Francis, Nathan, Pauline and Lillian, my pseudo-aunt Joann Lombardo, my various house-

mates over the years Mitch Berkson, Michael Cohn, John and Tomoko Ferguson, Scott Shenk,

Dan Vassilovski, Colin Weeks, and my good friends Lawrence Candell, John Georges, Gary and

Laura Grunbaum, Ealon Joelson, Alan Sbarra, and Jeff Steinhauer. I make special mention of my

beautiful girlfriend Jessica Daniels who has been very patient, encouraging and loving. Thesup-

port, in every form, provided to me by these people was indispensable.

- iv -

Notation

Spaces and Elements

IRn Euclideann-space

r
× IRm Cartesian product ofr copies of IRm

Lm
∞,2[0, 1] (Lm

∞[0, 1], /
\ ⋅, ⋅ \

/ Lm
2 [0,1], || ⋅ ||Lm

2 [0,1])
L i

N finite dimensional subspace of
Lm

∞,2[0, 1], i = 1, 2

L i
N time samples of elements inL i

N ,
i = 1, 2

L(�)
N L(�)

N ⊂ L1
N , � -th order spline sub-

space

L(�)
N spline coefficients of elements in

L(�)
N .

H2 IRn × Lm
2 [0, 1]

H∞,2 IRn × Lm
∞,2[0, 1] ⊂ H2

HN IRn × L1
N or IRn × L2

N ,
HN ⊂ H∞,2

HN IRn × L1
N or IRn × L2

N

uk (uk,1, . . . ,uk,r) ∈∈ IRm × . . . × IRm

u (u0, . . . ,uN−1) ∈∈ LN� � = (� , u) ∈∈ H∞,2�
N

�
N = (� , uN) ∈∈ HN� � = (� , u) ∈∈ HN� (� 1, . . . , � N+� −1) ∈∈ L(�)

N .

Functions

/
\ ⋅, ⋅ \

/ � inner product in Hilbert space�
|| ⋅ ||� norm in Hilbert space�
VA,N VA,N : L i

N → L i
N , i = 1, 2

WA,N WA,N : H N → HN ,
WA,N((� , u)) = (� ,VA,N(u))

SN,� SN,� : L (�)
N → L(�)

N�
k,i tk + ci∆

u[� k,i] value of control sample at� k,i

D� (� ; h) directional derivative
du f (�) derivative of f (�) with respect to

the components ofu = VA,n(u)
d	 f (u) derivative of f (u) with respect to the

components of� = SN,� (u)
F(x , w) Right hand side of difference equa-

tion produced by RK discretization

Sets

B B ⊂ Lm
∞,2[0, 1] is the set on which

all differential operators are defined.
IN { 0, 1, 2, . . . }
N { dn } ∞

n=1

{ 0, 1, 2, . . . ,N − 1 }

11 column vector of ones.
B(v, �) { v′ ∈∈ IRm | ||v′ − v||2 ≤ � }
q { 1, . . . ,q }
tN tN = { tk } N−1

k=0 is the discretization
mesh, or ...

tN tN = { tk } N+� −1
k=−� +1 is a spline knot

sequence
A Runge-Kutta parameters

A = [c, A, b]
I I = { i1, i2, . . . ,i r }

= { i | c j ≠ ci , j < i }
I j I j = { i | ci = c i j

, i j ∈∈ I }

Constraint Sets

U ⊂ IRm pointwise control constraint set
U ⊂ B set of feasible controls

UN ⊂ L N u ∈∈ UN == > u j
k ∈∈ U

UN UN = V −1
A,N(UN) ⊂ L∞,2

H IRn × U ⊂ H∞,2

HN IRn × UN ⊂ HN

HN IRn × V−1
A,N(UN)

U(�)
N U(�)

N = { u ∈∈ L(�)
N | � k ∈∈ U }

Differ ential and Difference Equations

x� (t) solution at timet of differential
equation given � = (� , u): initial
condition � and control inputu

x�k solution at time stepk of
difference equation, resulting from
RK discretization, for� = (� , u):
initial condition � and control
samplesu

x� N
k x� N

k = x �k with � = WA,N(� N)

- v -

Table of Contents

ACKNOWLEDGEMENTS v

NOTATION vi

CHAPTER 1: Intr oduction

1.1 NumericalMethods for Solving Optimal Control Problems.............................. 1

1.2 Contributions to the State-of-the-Art.. 5

1.3 DissertationOutline ..6

CHAPTER 2: Consistent Approximations Based on Runge-Kutta Integration

2.1 Introduction... 8

2.2 Theoryof Consistent Approximations.. 10

2.2.1 Overview of construction of consistent approximations........................ 13

2.3 Definitionof Optimal Control Problem.. 16

2.4 ApproximatingProblems ..20

2.4.1 FiniteDimensional Initial-State-Control Subspaces.............................. 20

2.4.2 Definitionof Approximating Problems.. 29

2.4.3 Epiconvergence ...33

2.4.4 Factors in Selecting the Control Representation.................................... 36

2.5 OptimalityFunctions for the Approximating Problems..................................... 38

2.5.1 ComputingGradients ..38

2.5.2 Consistency of Approximations ...41

2.6 CoordinateTransformations and Numerical Results.. 48

2.7 ApproximatingProblems Based on Splines... 53

2.7.1 Implementationof Spline Coordinate Transformation 67

2.8 ConcludingRemarks ..70

CHAPTER 3: Projected Descent Method for Problems with Simple Bounds

3.1 Introduction... 71

3.2 AlgorithmModel for Minimization Subject to Simple Bounds......................... 74

3.3 ComputationalResults ..90

3.4 ConcludingRemarks ..94

- vi -

CHAPTER 4: Numerical Issues

4.1 Introduction... 96

4.2 Integration Order and Spline Order Selection.. 98

4.2.1 Solutionerror for unconstrained problem.. 99

4.2.2 ConstrainedProblems ...103

4.3 Integration Error and Mesh Redistribution ...109

4.3.1 Computingthe local integration error.. 110

4.3.2 Strategies for mesh refinement... 112

4.4 Estimationof Solution Error... 120

4.5 SingularControl Problems (Piecewise Derivative Variation of the Control)..... 129

4.6 OtherIssues ..142

4.6.1 Fixed versus Variable Step-Size... 142

4.6.2 EqualityConstraints ...146

CHAPTER 5: RIOTS User’s Manual

5.1 Introduction... 147

5.2 ProblemDescription ...150

Transcription for Free Final Time Problems.. 151

Trajectory Constraints.. 152

Continuum Objective Functions ...153

5.3 UsingRIOTS ..154

5.4 UserSupplied Subroutines... 167

5.5 SimulationRoutines ..184

Implementation of the Integration Routines... 193

5.6 OptimizationPrograms ...206

Coordinate Transformation ...211

Description of the Optimization Programs... 213

5.7 Utility Routines ...232

5.8 Installing,Compiling and Linking RIOTS ...242

CHAPTER 6: Conclusions and Directions for Futur e Research 249

APPENDIX A: Proof of Some Results in Chapter 2 257

APPENDIX B: Example Optimal Control Problems 262

REFERENCES 266

- vii -

Chapter 1

INTRODUCTION

1.1 NUMERICAL METHODS FOR SOLVING OPTIMAL CONTROL PROBLEMS

Numerical methods for solving optimal control problems have evolved significantly over the

past thirty-four years since Pontryagin and his students presented their celebrated maximum

principle [1]. Most early methods were based on finding a solution that satisfied the maximum

principle, or related necessary conditions, rather than attempting a direct minimization of the

objective function (subject to constraints) of the optimal control problem.For this reason, meth-

ods using this approach are called indirect methods.Explanations of the indirect approach can be

found in[2-6].

The main drawback to indirect methods is their extreme lack of robustness: the iterations of

an indirect method must start close, sometimes very close, to a local solution in order to solve the

two-point boundary value subproblems.Additionally, since first order optimality conditions are

satisfied by maximizers and saddle points as well as minimizers, there is no reason, in general, to

expect solutions obtained by indirect methods to be minimizers.

Both of these drawbacks of indirect methods are overcome by so-called direct methods.

Direct methods obtain solutions through the direct minimization of the objective function (subject

to constraints) of the optimal control problem.In this way the optimal control problem is treated

as an infinite dimensional mathematical programming problem.There are two distinct

approaches for dealing with the infinite dimensional aspect of these problems.The first approach

develops specializedconceptualalgorithms, and numerical implementations of these algorithms,

for solving the mathematical programs.A conceptual algorithm is either a function space analog

of a finite dimensional optimization algorithm or a finite dimensional algorithm (obtained by

restricting the controls to a finite dimensional subspace of the control space) that requires infinite

dimensional operations such as the solution of differential equations and integrals. Animplemen-

tation of a conceptual algorithm accounts for errors that result when representing elements of an

infinite dimensional functions space with finite dimensional approximations and the errors

- 1 - Chap. 1

produced by the numerical methods used to perform infinite dimensional operations.There are

many examples of conceptual algorithm for solving optimal control problem, some with and

some without implementations[7-31].

The conceptual algorithm approach for solving optimal control problems has serious draw-

backs. First,customized software for controlling the errors produced in the numerical approxi-

mations of infinite dimensional functions and operations must be incorporated into the implemen-

tation of a conceptual algorithm.More seriously, because function evaluations are performed

only approximately the function gradients used by mathematical programming software will not

be coordinated with those same functions.That is, the gradients will only be approximations to

the derivatives of the functions.This mean, for example, that it is possible that the negative of a

function gradient may not be a direction of descent for the approximation of that function.This

problem is exacerbated as a stationary point is approached.A related problem is that a certain

amount of precision in the function evaluations is required to ensure successful line searches.

Together, these facts mean that, in practice, high precision in numerical operations such as inte-

gration is required even in early iterations of the optimization procedure.Since high precision in

early iterations does not contribute to the accuracy of the final solution, this requirement makes

the implementation of conceptual algorithm inefficient for most problems.

An alternate direct method approach is one which we term consistent approximations.In

the consistent approximations approach, the optimal control is obtained by solving a sequence of

finite dimensional, discrete-time optimal control problems† that are increasingly accurate repre-

sentations of the original, continuous-time problem.The solutions of the approximating, discrete-

time optimal control problems can be obtained using standard, finite dimensional mathematical

programming techniques.Under suitable conditions, solutions of the approximating problems

converge to a solution of the original problem.In this sense, such discrete-time optimal control

problems are calledconsistent approximationsto the original problem.

The first rigorous developments of algorithms based on solving finite dimensional approxi-

mating problems used Euler’s method and piecewise constant control representations (which

results in a finite dimensional control parameterization) to discretize the original problem (see the

introduction to Chapter 2 for references).From a numerical analyst’s point of view, the choice of

Euler’s method may seem strange since Euler’s method is an extremely inefficient method for

solving differential equations.But there are reasons for choosing Euler’s method as a

†Speaking more accurately, the discretized problems need not be a discrete-time optimal control problems.For instance, if the
controls are represented as finite dimensional B-splines, the decision variables of the discretized problems are spline coefficients, not
control values at discrete times.

- 2 - Chap. 1

discretization procedure for optimal control problems.First, up until this work, there has been no

theory supporting the use of iterative higher-order integration methods in the construction of con-

sistent approximations.Second, only recently has it been demonstrated that there can be an

advantage to using higher-order discretization methods for solving optimal control problems.The

use of higher-order discretization methods for solving optimal control problems remains an active

area of research.It is difficult to demonstrate a theoretical advantage to using higher order meth-

ods rather than Euler’s methods when solving general, constrained optimal control problems.

However, many optimal control problems that arise in practice are, in fact, solved much more effi-

ciently with higher-order methods.

Within the category of direct methods based on the idea of consistent approximations, there

is a further sub-classification that helps to establish where our work stands in relation to other

methods. Thissub-classification specifies how the discretization of an optimal control problem

into a finite dimensional approximating problem is accomplished: via collocation (or more gener-

ally, a Galerkin approximation) or via iterative integration. Currently, the most popular dis-

cretization scheme is based on collocation and methods similar in spirit to

collocation [16-18,32-41].In collocation methods, the system of differential equations describing

the dynamic system is replaced by a system of equations that represent collocation conditions to

be satisfied at a finite number of time points.The resulting mathematical program involves not

only the control parameters as decision variables but also a large number of additional variables

that represents the value of state variables at mesh points.Collocation schemes offer several

advantages over iterative integration schemes:

1. It is easier to prove convergence and order of convergence results.

2. Someresults for the order of error, as a function of the discretization level, between solu-

tions of the approximating problems and solutions of the original problem (namely, for

unconstrained optimal control problems) are superior to other schemes[36].

3. Certaindifficulties inherent to some optimal control problems, such as stiff differential equa-

tions and highly unstable dynamics, are greatly mitigated in collocation schemes.

4. Simplebounds on state variables translate into simple bounds on the decision variables of

the mathematical program.

5. Functiongradients are easier to compute since they do not require the derivative of the state

with respect to the controls.

However, relative to iterative integration, collocation schemes have serious drawbacks as well:

1. Theapproximating problems are significantly larger at a given discretization level due to the

inclusion of state variables as decision parameters.

- 3 - Chap. 1

2. Theapproximating problems are significantly harder to solve because of the addition of a

large number of (nonlinear) equality constraints that represent the collocation conditions.

3. Theaccuracy of solutions obtained by solving the approximating problems can be somewhat

inaccurate due to the presence of the collocation constraints.

4. If the numerical algorithm for solving the approximating problems is terminated prematurely

the solution may not be useful since the collocation conditions will not be satisfied.

Because of these disadvantages, solutions obtained using a collocation scheme often have to be

subsequently refined using an indirect solution method[4].

The work in this thesis is based on discretizing optimal control problems using explicit,

fixed step-size Runge-Kutta integration techniques.The advantage of this scheme over colloca-

tion schemes is that the approximating problems that result can be solved very efficiently and

accurately. On the other hand, some of the features listed above as advantages associated with

collocation are sacrificed.Specifically, convergence results are more difficult to prove for the

Runge-Kutta method and, in the case of unconstrained problems, the order of error for solution of

the approximating problems is lower (see[42] and Proposition 4.6.2).Also, it is quite convenient

from a programming point of view that state variable bounds become bounds on the decision vari-

ables of the mathematical program (advantage 4).However, this advantage is more than offset by

the addition of the system of equality constraints representing the collocation conditions.Finally,

the difficulties of solving problems with highly unstable dynamics can also be handled when

using explicit Runge-Kutta integration. Amethod for doing so is discussed in the Chapter 6.

As far as we know, the work reported in this thesis represents the only work on consistent

approximation schemes using Runge-Kutta integration. Thus,at the very least, our work comple-

ments the work of other authors that deal with collocation schemes.But further, we believe that

our approach has significant theoretical and practical advantages that will make it, with sufficient

development, a leading approach to solving optimal control problems.

- 4 - Chap. 1

1.2 CONTRIBUTIONS TO THE STATE-OF-THE-ART

The original goal of this research was simply to develop a fast and accurate software pack-

age for solving optimal control problems using explicit Runge-Kutta integration. Inthe process

of writing this software we have, by necessity, dev eloped a strong theoretical foundation for our

discretization approach as well constructing several new algorithms for various types of computa-

tion. Thefollowing is a concise summary of the contributions provided by this work to the state-

of-the-art in numerical methods for solving optimal control problems:

• Provides the first convergence analysis and implementation theory for discretization methods

based on Runge-Kutta integration. Specifically, conditions on the parameters of the Runge-

Kutta method are presented that ensure, for instance, that stationary points of the discretized

problems can only converge to stationary points of the original problem.

• Derives a non-Euclidean metric needed for the finite-dimensional optimization of the approxi-

mating problems and presents a coordinate transformation which allows a Euclidean metric to

be used.Without this metric, serious ill-conditioning can be introduced into the discretized

problem.

• Improves upon the previously known bound for the error in the solution of the approximating

problems as a function of the discretization level for RK4 (the most common fourth-order

Runge-Kutta integration method) when solving unconstrained optimal control problems.This

result, along with the already known bounds for a first, second and third order Runge-Kutta

method are extended to the case where the finite dimensional controls are represented by

splines.

• Presents a new, very efficient and robust numerical algorithm, based on the projected Newton

method of Bertsekas, for solving a class of mathematical programming problems with simple

bounds on the decision variables.

• Dev elops a new method for computing accurate estimates of the error between the solutions

computed for the approximating problems and solutions of the original problem.This esti-

mate does not requirea priori knowledge of error bounds and works for problems with state

and control constraints.

• Dev elops a completely new method for numerically solving singular optimal control prob-

lems. Thismethod is designed to eliminate undesirable oscillations that occur in numerical

solutions of singular control problems.

• Presents our software package called RIOTS, based on the theory in contained in this thesis,

for solving optimal control problems.Although there are many improvements that can be

made to RIOTS, it is already one of the fastest, most accurate and easiest to use programs

available for solving optimal control problems.

- 5 - Chap. 1

1.3 DISSERTATION OUTLINE

The organization of this dissertation follows a progression leading from basic theoretical

foundations of discretizing optimal control problems to the implementation of a software package

for solving a large class of optimal control problems.The theoretical foundation is presented in

Chapter 2.Chapter 2 begins with a discussion of the concept of consistent approximations as

defined by Polak[43]. Polak’s definition of consistent approximations extends earlier definitions,

namely that of Daniels[44], that were concerned only with convergence of global solutions of the

approximating problems to global solutions of the original problem.The earlier definitions were

therefore of limited use since optimization algorithms compute stationary points, not global solu-

tions. Polak’s definition of consistency deals with stationary points and local minima as well as

global solutions.The theory of consistent approximations is used to develop a framework for dis-

cretizing optimal control problems with Runge-Kutta integration. Themain results in Chapter 2

show that the approximating problems are consistent approximations to the original optimal con-

trol problem if the Runge-Kutta method satisfies certain conditions in addition to the standard

conditions needed for consistent integration of differential equations.Once the consistency result

is established, the convergence results provided by the theory of consistent approximations can be

invoked. In the process of constructing consistent approximations based on Runge-Kutta dis-

cretization, we show that a non-Euclidean inner-product and norm, depending on the basis used

for the finite dimensional control subspaces, must be used for the space of control coefficients

upon which the finite dimensional mathematical programs that results from the discretization are

defined. Without this non-Euclidean metric, serious ill-conditioning can result.We also show

how a coordinate transformation can be used to eliminate the need for the non-Euclidean inner-

product and norm.The results are then extended to control representations based on splines.

In Chapter 3, we present a very efficient and robust optimization algorithm for solving finite

dimensional mathematical programming problems that include simple bounds on the decision

variables. Suchproblems arise from the discretization of optimal control problems with control

bounds. InChapter 4, other important numerical issues are addressed.These issues include

(i) obtaining bounds on the error of solutions to the approximating problems based on spline con-

trols, (ii) developing heuristics for selecting the integration order and control representation

order, (iii) providing methods for refining the discretization mesh,(iv) providing a computable

error estimate for solutions of the approximating problems and(v) dealing with the numerical

difficulties that arise when solving singular optimal control problems.We also present numerical

data to support our claim that implementations of conceptual algorithms are inefficient compared

to the consistent approximations approach to solving optimal control problems.

- 6 - Chap. 1

The next chapter, Chapter 5, contains the user’s manual for RIOTS. RIOTS is our software

package, developed as a toolbox for Matlab†, for solving a very broad class of optimal control

problems. Thisclass includes problems with multiple objective functions, fixed or free final time

problems, problems with variable initial conditions and problems with control bounds, endpoint

equality and inequality constraints, and trajectory constraints.The user’s manual includes a

mathematical description of the class of problems that can be handled, a series of sample sessions

with RIOTS, a complete reference guide for the programs in RIOTS, explanations of important

implementation details, and instructions for installing RIOTS. Chapter6, presents our conclu-

sions and ideas for future research.Finally, there are two appendices. Thefirst contains the

proofs of some of the results in Chapter 2 and the second describes some example optimal control

problems that we use, primarily in Chapter 4, for numerical experiments.

† Matlab is a scientific computation and visualization program designed by The MathWorks, Inc.

- 7 - Chap. 1

Chapter 2

CONSISTENT APPROXIMATIONS FOR OPTIMAL CONTROL

PROBLEMS BASED ON RUNGE-KUTTA INTEGRATION

2.1 INTRODUCTION

In this Chapter, we establish the theoretical foundation of our method for numerically solv-

ing optimal control problems.Specifically, we consider approximations to constrained optimal

control problems that result from numerical solving the differential equations describing the sys-

tem dynamics using Runge-Kutta integration. We show that there is a class of higher order,

explicit Runge-Kutta (RK) methods that provide consistent approximationsto the original prob-

lem, with consistency defined according to[43]. Consequently, we are assured that stationary

points of the approximating problems converge to stationary points of the original problem, and

that global solutions (or strict local solutions with a non-vanishing radius of attraction) of the

approximating problems converge to global (or local) solutions of the original problem, as the

step-size of the RK method is decreased.

The theory of consistent approximations introduced in[43] requires that the approximating

problems be defined on finite dimensional subspaces of the control space to which RK methods

can be extended. Theselection of the control subspaces affects both the accuracy of numerical

integration and the accuracy with which solutions of the original problem are approximated.

Once the approximating problems are defined, their numerical solution is carried out by means of

standard mathematical programming algorithms in the space of coefficients associated with the

bases defining the control subspaces.We construct two such families of control subspaces.The

‘‘ natural’’ basis functions for one family are piecewise polynomial functions, and for the other,

piecewise constant functions.Also, B-splines provide a basis for a subspace of piecewise polyno-

mial functions. None of these sets of basis functions is orthonormal.Hence, to preserve the L2

inner product and norm used in the control subspace, a non-Euclidean inner product and norm

must be used in the associated space of coefficients. Failing to do so introduces a ‘‘changed

- 8 - Chap. 2

metric’’ effect that can adversely affect the performance of algorithms.The possible severity of

this phenomenon is demonstrated by our computational results in Section 6.To remove the need

to modify nonlinear programming software written for problems defined on a Euclidean space,

we introduce coordinate transformations that change our original bases in the control space to an

orthonormal set and change the associated coefficient space to a Euclidean space.

Daniel [44]presents one of the first attempts to characterize, in a general framework, con-

sistency of approximations to an optimization problem as well as an application of this frame-

work to approximations of optimal control problems obtained using the Euler integration formula.

It can be shown that Daniel’s conditions for consistency imply epiconvergence [45,46],i.e., the

convergence, in the Kuratowski sense[47], of the constrained epigraphs of the approximating

problems to the constrained epigraph of the original problem.Epiconvergence ensures conver-

gence of the global minimizers (or strict local minimizers with a non-vanishing radius of attrac-

tion) of the approximating problems to global (or local minimizers) of the original problem.

Polak, in[43], characterizes first order optimality conditions in terms of zeros ofoptimality

functions. To define consistency of approximations, he augments the requirement of epiconver-

gence of the approximating problems with a related requirement for their optimality functions.

As a result, consistency, in the Polak sense, ensures convergence of global (local) solutions, and

stationary points, of the approximating problems to global (local) solutions, and stationary points,

of the original problem.Furthermore, the Polak definition of consistency indirectly imposes the

requirement that the mathematical characterization of the constraints of the approximating prob-

lems satisfy certain congruence conditions, and that derivatives of the approximating problem

functions converge to those of the original problem.In addition to a definition of consistency, we

find in[43] diagonalization strategies, in the form of master algorithms, that call nonlinear pro-

gramming algorithms as subroutines.These algorithms enable one to efficiently obtain an

approximate, numerical ‘‘solution’’ to an original infinite dimensional problem.

With the exception of [44] and[43], the analysis of the approximating properties of numeri-

cal integration techniques (see,e.g., [43,48-56]) in optimal control is not carried in the frame-

work of a general theory†. Convergence of global solutions, or in some cases, of stationary

points, of approximating problems obtained using Euler integration to those of the original prob-

lem was established in[43,44,48-50,53-55]. Ofthese, perhaps the most extensive treatment can

be found in[54]. The rate of convergence of stationary points of approximating problems,

obtained from discretization of unconstrained optimal control problems using a class of RK meth-

ods, to those of the original problem was explored in[42].

† This is also true for collocation techniques (see,e.g., [4,18,33,35,36]).

- 9 - Chap. 2

Organization. This chapter is organized as follows. Section2 summarizes the theory of con-

sistent approximations.Section 3 defines the optimal control problem and develops an optimality

function for it. In section 4 the approximating problems are constructed and epiconvergence of

the approximating problems is proved. In section 5, optimality functions for the approximating

problems are derived and are shown to hypoconverge to the optimality function for the original

problem. Thiscompletes the proof that the approximating problems are consistent approxima-

tions to the original problem.Section 6 introduces a transformation which defines orthonormal

bases for the control subspaces and presents a rate of convergence result for the most commonly

used RK method, RK4.Some numerical results are also included.Finally, in Section 7 the

results are extended to control subspaces based on splines.

2.2 THEORY OF CONSISTENT APPROXIMATIONS

Let be a normed linear space andB ⊂ a convex set and consider the problem

(2.1a)� ∈∈ F
min � (�)P

where � : B → IR is (at least) lower semi-continuous, andF ⊂ B is the feasible set.Next, let

IN =. { 1, 2, 3, . . .} , l et N be an infinite subset of IN, and let { N } N ∈∈ N be a family of finite

dimensional subspaces of such that N1
⊂ N2

, for all N1, N2 ∈∈ N such thatN1 < N2. Now

consider a family of approximating problems

(2.1b)� ∈∈ FN

min � N(�) , N ∈∈ N ,PN

where� N : N → IR is (at least) lower semi-continuous, andFN ⊂ N ∩ B.

In [43] we find a characterization of the consistency of the approximating problemsPN , in

terms of two concepts. Thefirst is epiconvergence of thePN to P [45] which can be shown to be

equivalent to Kuratowski convergence [47]of the restricted epigraphs of the cost functions of the

approximating problems to the restricted epigraph of the original problem.Epiconvergence does

not involve derivatives of the cost function nor the specific description of the constraint sets,

hence it is a kind of ‘‘zero-order’’ property. The second concept consists of the characterization

of stationary points as zeros of an ‘‘optimality function’’ and a kind of upper semi-continuity

property of the optimality functions of the approximating problems.Optimality functions do

depend on derivatives and the specific description of the constraint set, hence they add important

first-order and structural information.

- 10 - Chap. 2

Definition 2.1. We will say that the problems in the family { PN } N ∈∈ N converge epigraphi-

cally (or epiconverge) to P (PN
Epi

→ P) if

(a) for every � ∈∈ F, there exists a sequence{ � N } N ∈∈ N, with � N ∈∈ FN , such that� N → � and

lim � N(� N) ≤ � (�);

(b) for every infinite sequence{ � N } N ∈∈ K , K ⊂ N, satisfying � N ∈∈ FN for all N ∈∈ K and

� N →K � , we hav ethat � ∈∈ F and limN ∈∈ K � N(� N) ≥ � (�).

There are two subsets involved in our formulation of this definition.The subsetN is used to pro-

vide nesting of the finite dimensional subspaces N . The subsetK ⊂ N is required so that Defi-

nition 2.1 is equivalent to Kuratowski convergence. Thisis because, not only is the sequence

{ � N } parameterized byN, but so are the problems in the sequence{ PN } .

In [43,45,46]we find the following result:

Theorem 2.2. Suppose thatPN
Epi

→ P. (a) If, for N ∈∈ N, �̂ N is a global minimizer ofPN ,

and �̂ is any accumulation point of the sequence{ �̂ N } N ∈∈ N, then �̂ is a global minimizer ofP;

(b) if, for N ∈∈ N, �̂ N is a strict local minimizer ofPN whose radius of attraction is bounded

aw ay from zero, and�̂ is any accumulation point of the sequence{ �̂ N } N ∈∈ N, then �̂ is a local

minimizer ofP.

Epigraphical convergence does not eliminate the possibility of stationary points ofPN con-

verging to a non-stationary point ofP: a most inconvenient outcome from a numerical optimiza-

tion point of view. For example, let = IR2 with � = (x, y), and let f (�) = f N(�) = (x − 2)2,

N ∈∈ IN. Choose

(2.2a)F =. { (x, y) ∈∈ IR2 | x2 + y2 − 2 ≤ 0 } ,

(2.2b)FN =. { (x, y) ∈∈ IR2 | (x − y)2(x2 + y2 − 2) ≤ 0, x2 + y2 ≤ 2 + 1 / N } , N ∈∈ IN .

Then we see thatPN
Epi

→ P. Nev ertheless, the point (1,1) is feasible and satisfies the F. John opti-

mality condition for allPN , but it is not a stationary point for the problemP (see Figure 2.1).The

reason for this is an incompatibility of the constraint setsFN with the constraint setF, which

shows up only at the level of optimality conditions. Hypotheses precluding this pathology, at

least for first order non-stationary points, were introduced in[43] using optimality functions as a

tool for ensuring a kind of ‘‘first order’’ approximation result that implicitly enforces convergence

of derivatives and restricts the forms chosen for the description of the setsF andFN .

- 11 - Chap. 2

x

y

(1,1)

2

stationary point
for approximating
problem

optimal point for
original problem

1
N

Fig. 2.1: Graph of the feasible regions for the approximating problems showing that the station-
ary points for the approximating problems converge to the point (1,1) which is a non-stationary
point for the original problem.The arrows around (1,1) indicate the gradients (translated from
the origin) for the two constraint functions and the objective function.

Definition 2.3. We will say that a function� : B → IR is an optimality functionfor P if (i) � (⋅)

is (at least) upper semi-continuous,(ii) � (�) ≤ 0 for all � ∈∈ B, and (iii) for �̂ ∈∈ F, � (�̂) = 0 if �̂
is a local minimizer forP. Similarly, we will say that a function� N : H N → IR is an optimality

functionfor PN if (i) � N(⋅) is (at least) upper semi-continuous,(ii) � N(� N) ≤ 0 for all � N ∈∈ HN ,

and(iii) if �̂ N ∈∈ FN is a local minimizer forPN then � N(�̂ N) = 0

Definition 2.4. Consider the problemsP, PN , defined in (2.1a,b).Let � (⋅), � N(⋅), N ∈∈ N, be

optimality functions forP, PN , respectively. We will say that the pairs (PN , � N), in the sequence

{ (PN , � N) } N ∈∈ N are consistent approximationsto the pair (P, �), if (i) PN
Epi

→ P, and (ii) for

any sequence {� N } N ∈∈ K , K ⊂ N, with � N ∈∈ FN for all N ∈∈ K , such that� N →K � , the opti-

mality functions of the approximating problems satisfy the condition

(2.3)lim � N(� N) ≤ � (�) .

Note that part(ii) of Definition 2.4 rules out the possibility of stationary points (points such

that � N(� N) = 0) for the approximating problems converging to non-stationary points of the orig-

inal problem. In the sequel, we will prove a stronger condition than is required by Definition 2.4,

namely, Kuratowski convergence of the hypographs of� N(⋅) to the hypograph of� (⋅) (that is,

- 12 - Chap. 2

−� N
Epi

→ − �).

In addition to the characterization of consistency, the theory of consistent approximations

in [43] includes various master algorithm models for efficiently solving problems such asP.

Given a lev el of discretization defined byN, the master algorithms construct an approximating

problemPN , execute a nonlinear programming or discrete-time optimal control algorithm as a

subroutine for a certain number of iterations onPN , and then increaseN. Then the process is

repeated. For specific examples, see[55,57].

2.2.1. Overview of the construction of consistent appr ox imations f or optimal

contr ol pr oblems.

In the remaining sections of this chapter we proceed to construct approximating problems, based

on Runge-Kutta integration, to a general class of optimal control problems and show that they are

consistent approximations.To guide the reader, we provide here an outline of the development, in

a slightly re-arranged order, for a simple class of unconstrained optimal control problems with a

smooth objective function.

We start by defining the optimal control problem.In this overview we will just consider

unconstrained problems with fixed initial conditions of the form

u ∈∈ U
min f (u)P

where f (u) ∈∈ IR is the objective function defined by

(2.5a)f (u) =. � (xu(1))

andxu(t) ∈∈ IRn is the solution of the system of differential equation

(2.5b)ẋ = h(x, u) , t ∈∈ [0, 1] ; x(0) = � .

Hence, the objective is a function of the final statexu(1) which depends on the controlu ∈∈ U,

u(t) ∈∈ IRm. Note that other forms of optimal control problems such as the Bolza and Lagrange

forms can be converted into this form.

ProblemP is defined over the feasible setU of controls. In the sequel, we will allow U to

include control constraints but here we will assume that it does not.The choice ofU is compli-

cated by the fact that while standard optimality conditions forP are expressed in theL2-norm,

f (⋅) is differentiable inL∞[0, 1] but not in L2[0, 1]. To overcome this difficulty, we define the

pre-Hilbert space

(2.6)Lm
∞,2[0, 1] =. (Lm

∞[0, 1] , /
\ ⋅, ⋅ \

/ 2 , || ⋅ ||2)

which consists of elements ofLm
∞[0, 1] but is endowed with theL2 inner-product and norm.Then

- 13 - Chap. 2

we allow U ⊂ Lm
∞,2[0, 1]. SinceP is an unconstrained problem, we can choose for its optimality

function

(2.7)
�

(u) = − ||∇ f (u)||2

because− ||∇ f (u)||2 is continuous, negative valued and zero atû if û is a local minimizer ofP

since a first order necessary condition for optimality ofû is ∇ f (û) = 0 (that is,∇ f (û)(t) = 0 for

t ∈∈ [0, 1] a. e.). Thegradient∇ f (u) can be computed according to standard formulas which are

presented in Section 3.

The next step is to construct the approximating problems through some discretization proce-

dure. Ourmethod involves(i) integrating the differential equation numerical using Runge-Kutta

(RK) integration and(ii) replacing the infinite dimensional control setU with a finite dimen-

sional approximating setUN . A RK integration method is specified by a set of parameters collec-

tively called the Butcher array. The Butcher array, A = [c, A, bT], consists of three sets of param-

eters. Thec parameters relate to sampling instances where the RK integration evaluates the right-

hand side of (2.5b) and theb parameters are relative weights assigned to each of these evalua-

tions. TheA parameters affect the order of convergence of the RK method but do not play a role

in the first-order convergence analysis.The integration proceeds to compute approximations of

the statexk ≈ xu(tk) at the discrete time points{ tk } N
k=0 according to

(2.8a)xk+1 = F (xk, uk) =. xk + ∆
s

i=1
Σ bi Ki ; x0 = �

with

(2.8b)Ki = h(xi + ∆
i−1

j=1
Σ aij K j , uk,i)

(2.8c)uk,i = u(tk + ci∆)

wheres is the number of stages in the RK method,∆ = t k+1 − tk = 1 / N (we assume a uniform

mesh in this Chapter for simplicity) andc = (c1, . . . ,cs) and b = (b1, . . . ,bs) are parameters from

the Butcher array. Equation (2.8c) is a simplification of how we later defineuk,i to take care of

the possibility thatu(⋅) is discontinuous attk + ci∆. The quantitiesuk,i ∈∈ IRm are calledcontrol

samplesand relate to functionsu ∈∈ UN through a mapVA,N which depends on the Butcher array

A and the discretization level N. This map defines how the RK method integrates over controls

in UN .

From (2.8b), we see that the RK integration depends on the control samplesuk,i for

k = 0, . . . ,N − 1, i = 1, . . . ,s. We must take some care if control samples occur at identical sam-

pling times, but we will ignore this possibility for now. The control samples are organized as

- 14 - Chap. 2

follows:

(2.9a)uk = (uk,1, . . . ,uk,s) ∈∈
s
× IRm

(2.9b)u = (u0, . . . ,uN−1) ∈∈
N
×

s
× IRm .

In other words, the collection of control samples used by the RK method is denoted byu which

hasN components,uk, each of which contains the control samples used by the RK method over

one step.When we useu in algebraic expressions, we will be treating it as them× Nsmatrix

(2.9c)u = [u0,1
. . .u0,s

. . . uN−1,1
. . .uN−1,s] .

If m = 1 thenu is just a row vector (not a column vector). Thespace of control samples is

(2.9c)LN = (
N
×

s
× IRm , /

\ ⋅, ⋅ \
/ LN

, || ⋅ ||LN
) .

We will specify inner-product and norm onLN in a moment.To indicate its dependence onu, we

will write the solution to (2.8a) asxu
k.

The next step is to choose finite dimensional subspacesLN ⊂ Lm
∞,2[0, 1]. These subspaces

can be defined in many ways. InSection 4 we define two representations forLN , one based on

piecewise polynomials and the other based on piecewise constants.We define a third representa-

tion based on splines in Section 7.Given adefinition forLN , we relate functionsu ∈∈ LN to their

control samplesu ∈∈ LN via the bijective map

(2.9d)VA,N : L N → LN.

Essentially, this map is defined in the following way: for eachu ∈∈ LN , u = VA,N(u) is giv en by

uk,i = u(tk + ci). This is somewhat different when dealing with splines.However, in the sequel

we will account for the possibilities mentioned above that (i) u(⋅) is discontinuous and(ii) some

of the control sample occur at the same sampling times.

Now we can define the approximating problems:

u ∈∈ UN

min fN(u)PN

(2.10)fN(u) =. � (x
VA,N(u)
N)

whereUN ⊂ LN ∩ U. The reason we do not writeUN = L N ∩ U is because we might have to

add additional constraint onUN , depending on how LN is defined, in order to prove consistency.

In order to compute solutions ofPN using a computer we will actually solve a mathematical pro-

gram involving the control samplesu ∈∈ LN . In order for an optimization program working in the

spaceLN to be equivalent to an optimization program working in the function spaceLN , we need

- 15 - Chap. 2

to define the inner-product and norm onLN so that, with u, v ∈∈ LN and u = V−1
A,N(u),

v = V−1
A,N(v),

(2.11)/
\ u, v \

/ LN
= /

\ u, v \
/ 2 and ||u||LN

= ||u||2 .

Equation (2.11) is enough to define/
\ ⋅, ⋅ \

/ LN
and || ⋅ ||LN

; we giv e specific formulas in Section 4 and

Section 7.With the metric defined in this way, VA,N becomes an isometric isomorphism between

LN and LN . Hence, operations in one of the space are equivalent to the same operations in the

other. Besides establishing this correspondence of operations, the definition of the metric onLN

is important from a purely computational point of view because it can prevent ill-conditioning in

the mathematical program used to solve PN . It is important to note that the metric onLN

depends only on the basis forLN , not on the optimal control problem to be solved.

The final step in the construction of the approximating problems is to define their optimality

functions. Following the form of the optimality function� (⋅) for P we choose

(2.12a)� N(u) = − ||∇ fN(u)||22 .

The computation of∇ fN(u) is non-standard because the gradient is defined relative to the space

LN which we define.We will show that, foru ∈∈ LN ,

(2.12b)∇ fN(u) =

d

du
fN(VA,N(u))

M−1

N

whered fN(u) / du is the standard discrete-time derivative of fN(u), which can be computed using

formulas similar to those for Euler’s method, andM N is a positive-definite matrix that depends

only on the definition ofLN . This formula is slightly different for splines.

2.3 DEFINITION OF OPTIMAL CONTROL PROBLEM

We will consider optimal control problems with dynamics described by ordinary differential

equations of the form:

(3.1)ẋ(t) = h(x(t), u(t)) , a.e. for t ∈∈ [0, 1] , x(0) = � ,

wherex(t) ∈∈ IRn, u(t) ∈∈ IRm, and henceh : IRn × IRm → IRn. Non-autonomous dynamics can be

handled by defining time as an extra state variable withṫ = 1, t(0) = 0.

To establish continuity and differentiability of solutions of (3.1) with respect to controls,

one must assume that the controls are bounded inLm
∞[0, 1]. However, the finite dimensional

approximating control subspaces that we will introduce must be treated as Hilbert spaces.This

can cause complications in establishing the required approximation properties of the optimality

- 16 - Chap. 2

functions for the approximating problems that we will construct.To circumvent this difficulty, we

will, as in[43] assume that the controls are elements of the pre-Hilbert space

(3.2a)Lm
∞,2[0, 1] =. (Lm

∞[0, 1] , /
\ ⋅, ⋅ \

/ 2 , || ⋅ ||2),

which consists of the elements ofLm
∞[0, 1], but is endowed with theLm

2 [0, 1] inner product and

norm. Notethat Lm
∞,2[0, 1] is dense inLm

2 [0, 1].

We will define our optimal control problems on the pre-Hilbert space

(3.2b)H∞,2 =. IRn × Lm
∞,2[0, 1] =. (IRn × Lm

∞[0, 1] , /
\ ⋅, ⋅ \

/ H , || ⋅ ||H),

whose elements� consist of pairs of initial states and controls,i.e., � = (� , u). Notethat H∞,2 is

a dense subspace of the Hilbert space

(3.2c)H2 = IRn × Lm
2 [0, 1] .

The inner product/\ ⋅, ⋅ \
/ H and norm || ⋅ ||H , on H2, and hence also onH∞,2, are defined as follows.

For any � = (� , u) ∈∈ H2 and � ′ = (� ′, u′) ∈∈ H2,

(3.2d)/
\ � , � ′ \

/ H =. /
\ � , � ′ \

/ + /
\ u, u′ \

/ 2,

where /
\ � , � ′ \

/ denotes the Euclidean inner product, and theL2 inner product/\ u, u′ \
/ 2 is defined by

/
\ u, u′ \

/ 2 =. ∫
1

0

/
\ u(t), u′(t) \

/ dt. Consequently, for any � = (� , u) ∈∈ H2,

(3.2e)||� ||2H =. /
\ � , � \

/ H = ||� ||2 + ||u||22 .

Next, we introduce a compact, convex control constraint set

U ⊂ B(0, � max) =. { u ∈∈ IRm | ||u|| ≤ � max} , where � max is assumed to be sufficiently large to

ensure that all the controlsu(⋅) which we expect to deal with take values in the interior of

B(0, � max). We then define the set of admissible controls by

(3.3a)U =. { u ∈∈ Lm
∞,2[0, 1] | u(t) ∈∈ U , a.e. for t ∈∈ [0, 1] }

and the set of admissible initial state-control pairs by

(3.3b)H =. IRn × U ⊂ H∞,2 .

The setH is contained in the larger set

(3.3c)B =. IRn × { u ∈∈ Lm
∞,2[0, 1] | u(t) ∈∈ B(0, � max) , a.e. on [0, 1] } ⊂ H∞,2

inside which all of our results concerning differential equations are valid. Finally, solutions of

(3.1) corresponding to a particular� ∈∈ B will be denoted byx (⋅).

We will consider the following canonical constrained minimax optimal control problem:

- 17 - Chap. 2

(3.4a)! ∈∈ H
min { " o(#) | " c(#) ≤ 0 } ,CP

where the objective function," o : B → IR, and the state endpoint constraint function," c : B → IR

are defined by

(3.4b)" o(#) =. $
∈∈ qo

max f

$
(#) , " c(#) =. $

∈∈ qc+qo

max f

$
(#) ,

where the% -th function f

$
: H → IR is defined by

(3.4c)f

$
(#) =. &

$
(' , x

!
(1)) ,

with
& $

: IRn × IRn → IR, and qo =. { 1, 2, . . . ,qo } , qc =. { 1, 2, . . . ,qc } (with qo andqc positive

integers). The set qc + qo =. { 1 + qo, . . . ,qc + qo } . I n what follows, we will let

q =. { 1, 2, . . . ,q } w ith q = qo + qc. By defining the feasible setF =. { # ∈∈ H | " c(#) ≤ 0 } , we

can writeCP in the equivalent form of problemP in (2.1a).

Various optimal control problems, such as non-autonomous, integral cost, and free-time

problems, can be transcribed into this canonical form.Also, the endpoint constraint in (3.4a) can

be discarded by setting" c(#) ≡ −∞, and control unconstrained problems can be included by

choosing(max andU sufficiently large to ensure that the solutionsu* (⋅) of CP take values in the

interior ofU .

Proper ties of the Defining Functions. We will require the following assumptions:

Assumption 3.1.

(a) The functionh(⋅, ⋅) in (3.1) is continuously differentiable, and there exists a Lipschitz con-

stant) < ∞ such that for allx′, x′′ ∈∈ IRn, and v′, v′′ ∈∈ B(0, (max) the following relations

hold:

(3.5a)||h(x′, v′) − h(x′′ , v′′)|| ≤) [||x′ − x′′ || + ||v′ − v′′ ||] ,

(3.5b)||hx(x′, v′) − hx(x′′ , v′′)|| ≤) [||x′ − x′′ || + ||v′ − v′′ ||] ,

(3.5c)||hu(x′, v′) − hu(x′′ , v′′)|| ≤) [||x′ − x′′ || + ||v′ − v′′ ||] ,

(b) The functions
& $

(⋅, ⋅), &
$* (⋅, ⋅) and

& $
x (⋅, ⋅), with % ∈∈ q, are Lipschitz continuous on bounded

sets.

- 18 - Chap. 2

The following results can be found in[58]

Theorem 3.2. If Assumption 3.1 is satisfied then

(i) there exists an+ < ∞ such that for all, ′, , ′′ ∈∈ B and for allt ∈∈ [0, 1]

||x- ′(t) − x- ′′ (t)|| ≤ + ||, ′ − , ′′ ||H ;

(ii) there exists aL < ∞ such that for all, ∈∈ B and allt ∈∈ [0, 1]

||x- (t)|| ≤ L(1 + ||. ||) ;

(iii) the functions/ o : B → IR and / c : B → IR are Lipschitz continuous on bounded sets;

(iv) the functionsf 0 (⋅), 1 ∈∈ q, hav econtinuous Gaˆteaux differentialsDf 0 : B × H∞,2 → IR that

have the formDf 0 (, ; 23,) = /
\ ∇ f 0 (,), 24, \

/ H ;

(v) the gradients∇ f 0 : B → H∞,2, ∇ f 0 (,) = (∇ 5 f 0 (,), ∇ u f 0 (,)), v ∈∈ q, are given by

(3.6a)∇ 5 f 0 (,) = ∇ 5 6 0 (. , x- (1)) + p0 ,- (0) ,

(3.6b)∇ u f 0 (,)(t) = hu(x(t), u(t))T p0 ,- (t) , \/ t ∈∈ [0, 1],

wherep0 ,- (t) ∈∈ IRn is the solution to the adjoint equation

(3.6c)ṗ0 = − hx(x- , u)T p0 , p0 (1) = ∇ x 6 0 (. , x- (1)) , t ∈∈ [0, 1] ,

and are Lipschitz continuous on bounded sets inB.

An Optimality Function . Referring to[59] the following result holds because of Theorem 3.2:

Theorem 3.3 For any , ∈∈ B, let

(3.7a)/ c(,)+ =. max { 0,/ c(,) } ,

and for any , , , ′ ∈∈ B and 7 > 0, let

(3.7b)Ψ(, , , ′) =. max { / o(,) − / o(, ′) − 78/ c(, ′)+ , / c(,) − / c(, ′)+ } .

If Assumption 3.1 is satisfied and,̂ ∈∈ H is a local minimizer of the problemCP, then

(3.8)D2Ψ (,̂ , ,̂ ; , − ,̂) ≥ 0 , \/ 9 ∈∈ H ,

whereD2Ψ indicates the directional derivative of Ψ(⋅, ⋅) with respect to its second argument.

Next we define an optimality function: : B → IR for CP. For any , , , ′ ∈∈ B and 1 ∈∈ q, we

define a first-order quadratic approximation tof 0 (⋅) at , by

(3.9a)f
∼ 0 (, , , ′) =. f 0 (,) + /

\ ∇ f 0 (,), , ′ − , \
/ H + 1

2 ||, ′ − , ||2H .

We define the optimality function, with the same fixed 7 > 0 used in (3.7b), by

- 19 - Chap. 2

(3.9b)
;
(<) =. =

′ ∈∈ H
min max

î > ∈∈ qo

max f
∼ > (< , < ′) − ? o(<) − @8? c(<)+ , > ∈∈ qc+qo

max f
∼ > (< , < ′) − ? c(<)+

.

The existence of the minimum in (3.9b) follows from the convexity of the constraint setH and of

the max functions in (3.9b) with respect to< ′, and the fact that f
∼ > (< , < ′) → ∞ as ||< ′|| → ∞ [60,

Corollary III.20 (p. 46)]. Note that if f > (<) ≡ −∞ for all A ∈∈ qc + qo, so that ? c(<) ≡ −∞, then

(3.9b) reduces to

(3.9c)
;

(<) =. =
′ ∈∈ H
min > ∈∈ qo

max f> (<) + /
\ ∇ f > (<), < ′ − < \

/ H + 1
2 ||< ′ − < ||2H − ? o(<) .

Referring once again to[58] we find the following result:

Theorem 3.5. Let
;

: B → IR be defined by (3.9b).If Assumption 3.1 holds then,(i)
;

(⋅) is

negative valued and continuous;(ii) the relation (3.8) holds if and only if
;
(<̂) = 0.

2.4 APPROXIMATING PROBLEMS

The construction of a family of approximating problems for our problemCP, in (3.4a), sat-

isfying the axioms of the theory of consistent approximation requires the construction of nested

families of finite-dimensional subspaces of the initial state-control spaceH∞,2, approximating

cost functions, and approximating constraint sets.Our selection of these approximations is

largely determined by our intention to use explicit, fixed step-size Runge-Kutta (RK)

methods [61,62]for integrating the dynamic equations (3.1).Throughout this chapter, we

assume, without loss of generality, that the integration proceeds with a uniform step-size.We will

relax this assumption in Chapter 4.

2.4.1 Finite Dimensional Initial-State-Contr ol Subspaces

We begin by defining families of finite dimensional subspacesHN , with

HN = IRn × LN ⊂ H∞,2, where theLN are finite-dimensional subspaces ofLm
∞,2[0, 1], spanned

by piecewise-continuous functions to which RK methods can be extended. Hence,given an

explicit, fixed step-size RK integration method, using step-size∆ = 1/N, we impose the following

conditions on the subspacesLN :

(i) For any bounded subsetS of B, there exists a B < ∞ such that for any < ∈∈ S ∩ HN , the

RK method results in an integration error no greater thanB /N in solving the differential equation

(3.1).

(ii) The data used by the RK integration method is an initial state and a set of control

- 20 - Chap. 2

samples†. We will require that each set of control samples corresponds to a unique element

u ∈∈ LN .

Condition (i) will be needed to prove that our approximating problems epiconverge to the

original problem. For the subspacesLN that we will present, we will actually be able to prove

more than first order accuracy. Condition(ii) facilitates the definition of the approximating prob-

lems and makes it possible to define gradients for the approximating cost and constraint func-

tions.

We will now show how the choice of an RK integration method affects the selection of the

subspacesLN . The generic, explicit fixed step-size,s-stage RK method computes an approxi-

mate solution to a differential equation of the form

(4.1a)ẋ(t) = h
∼

(t, x(t)) , x(0) = C , t ∈∈ [0, 1] ,

whereh
∼

: IR × IRn → IRn is continuous int and Lipschitz continuous inx. It does so by solving

the difference equation

(4.1b)xk+1 = xk + ∆
s

i=1
Σ bi Kk,i , x0 = x(0) = C , k ∈∈ D =E { 0, 1, . . . ,N − 1 } ,

with ∆ = 1/N, tk =. k∆, and Kk,i defined by the recursion

(4.1c)Kk,1 = h
∼

(F k,1, xk) , Kk,i = h
∼

(F k,i , xk + ∆
i−1

j=1
Σ ai , j Kk, j) , i = 2, . . . ,s ,

where, for convenience, we have defined

(4.1d)F k,i =. tk + ci∆ , ∆ = 1 / N .

The variablexk is the computed estimate ofx(tk). Thetime points { tk } N
k=0 define theintegra-

tion mesh, also referred to as thediscretization mesh. These time points will also be referred to as

breakpointsin the context of piecewise control representations.

The parametersai , j , ci andbi , in (4.1b) and (4.1c) determine the RK method.These param-

eters are collected in theButcher array A = [c, A, bT]. The Butcher array is often displayed in

the form:

† The term control samples will be clarified shortly.

- 21 - Chap. 2

c1 0
c2 a2,1 0

A =
...

. . .
. . .

cs as,1 as,s−1 0
b1

. . . bs−1 bs

The following assumption on theb parameters will hold throughout this chapter (conditions on

thec parameters will be added later):

Assumption 4.1. For all i ∈∈ s, bi > 0 andΣs
i=1 bi = 1.

Remark 4.2. The conditionΣs
i=1 bi = 1 is satisfied by all convergent RK methods.Other con-

ditions must be satisfied to achieve higher order convergence for multi-stage RK methods.

Now, in our case,h
∼

(t, x) = h(x, u(t)) and the elementsu(t) of the subspacesLN will be

allowed to be discontinuous from the left at certain pre-specified points.Hence,h
∼

(⋅, x) is discon-

tinuous and special care must be taken to ensure accurate integration. For this purpose, the values

u(G k,i) must sometimes be replaced by left limits as appropriate for the particular choice of the

subspaceLN . We will refer to these values ascontrol samplesand denote them byu[G k,i] where,

if necessary, u[G k,i] = lim t↑ H k,i
u(t). Thespecific definition ofu[G k,i] depends on the definition of

LN , but clearly ifu(⋅) is continuous atG k,i thenu[G k,i] = u(G k,i).

The recursion (4.1c) evaluatesh
∼

(⋅, ⋅) s times for each time-stepk ∈∈ D . If we collect the

correspondings control samples into a matrixI k =. (u[G k,1] . . .u[G k,s]), we can replace equations

(4.1b) and (4.1c) with

(4.3a)xk+1 = xk + ∆
s

i=1
Σ bi Kk,i , x0 = x(0) = J , k ∈∈ D ,

whereKk,i =. Ki (xk, I k) which is defined by the recursion

(4.3b)K1(x, I) = h(x, I 1) , Ki (x, I) = h(x + ∆
i−1

j=1
Σ ai , j K j (x, I) , I i) , i = 2, . . . ,s ,

whereI i is thei-th column ofI . Equations (4.3a,b) can be written equivalently as

(4.3c)xk+1 = xk + ∆
s

i=1
Σ bi h(Yk,i , I i) , x0 = x(0) = J , k ∈∈ D ,

where, for eachk,

(4.3d)Yk,1 = xk , Yk,i = xk + ∆
i−1

j=1
Σ ai , j h(Yk, j , I j) .

The quantitiesYk,i are intermediate estimates ofx(G k,i).

- 22 - Chap. 2

We will define the control subspaceLN , in such a way that there is a one-to-one correspon-

dence between elementsu ∈∈ LN and the samples ofu[tk + ci∆] used by the RK method with

step-size∆ = 1/N. The definition ofLN is somewhat complicated by the fact that some of theci

elements of the Butcher array may have the same value. Thiscauses the RK method to use sam-

ples at timestk + ci∆ more than once and hence leads to a reduction of the dimension in the asso-

ciated subspaceLN . To keep track of the distinct values of theci elements of the Butcher array,

we define the ordered set of indices

(4.4a)I =. { i1, i2, . . . ,i r } =. { i ∈∈ s|c j ≠ ci , \/ j ∈∈ s, j < i } ,

and let

(4.4b)I j =. { i ∈∈ s|ci = c i j
, i j ∈∈ I } , j ∈∈ r .

Thus, the total number of distinct values taken by the elementsci in the Butcher array isr . For

example, ifc = { 0, 1/2, 1/2, 1 } (as in the most commonly used fourth order RK method), then

r = 3, I = { i1 = 1, i2 = 2, i3 = 4 } , I1 = { 1 } , I2 = { 2, 3 } , and I3 = { 4 } . I f each ci is dis-

tinct, thenr = s, i j = j , and I j is the singleton{ j } . Otherwise,r < s andi j ≥ j for each j ∈∈ r .

By construction of the setI , the r distinct sampling times in the interval [tk, tk+1], k ∈∈ D
are given by K k,i j

, j ∈∈ r , i j ∈∈ I . Corresponding to each sampling time there is a control sample

u[K k,i j
] ∈∈ IRm. The collection of these control samples can be viewed as a vectoru ∈∈

N
×

r
× IRm,

where the symbol
N
× indicates the Cartesian product ofN spaces. We will partition vectors

u ∈∈
N
×

r
× IRm into N blocks, as follows:

(4.5a)u = (u0, u1, . . . ,uN−1) ,

where each blockuk ∈∈
r
× IRm, k ∈∈ D , is of the form

(4.5b)uk = (uk,1, . . . ,uk,r) ,

with uk, j ∈∈ IRm, j ∈∈ r , corresponding to the samplesu[K k,i j
], i j ∈∈ I , used by the RK integration

during thek-th time interval. Ouralgebraic expressions are simplified if we treatu as them× Nr

matrix [u0,1
. . .u0,r

. . .uN−1,1
. . .uN−1,r], i.e., we will identify

N
×

r
× IRm with the space IRm× Nr of

m× Nr matrices. Similarly, in algebraic expressions, will treat uk as the m× r matrix

[uk,1
. . .uk,r]. Thestandard inner product on

N
×

r
× IRm is thel2 Euclidean inner product given by

(4.5c)/
\ u, v \

/ l2 =
N−1

N=0
Σ

r

j=1
Σ /

\ uk, j , vk, j
\
/ .

Let G be ther × s matrix defined by

- 23 - Chap. 2

(4.5d)G =

11T
1

11T
2

. . .

11T
r

where, for eachj ∈∈ r , 11T
j = (1, 1, . . . , 1)is a row vector of dimension |I j | (|I j | is the number of

elements inI j). Thenwe can associate the componentsuk, k ∈∈ D , of a vector u ∈∈
N
×

r
× IRm,

with the matricesL k used by the RK method (4.3a,b) by settingL k = ukG = [uk,1
. . .uk,r]G.

We now present two control representations that define subspacesL i
N ⊂ Lm

∞,2[0, 1],

i = 1, 2, N ∈∈ IN, of dimensionNrm, such that∪ ∞
N=1 L1

N and ∪ ∞
N=1 L2

N are dense inLm
∞,2[0, 1].

Both representations reduce to simple square pulses for Euler’s method (r = 1). Thebasis func-

tions { el Φi
N,k, j } N,r ,m

j=1,k=1,l=1, i = 1, 2, with el the l -th unit vector in IR and Φi
N,l ,k : [0, 1] → IRm,

that we use to construct the spacesL i
N are not orthonormal.Hence, for numerical calculations,

we associate with these spacesNrm-dimensional spaces of real coefficients of the form

(4.5e)L i
N =. (

N
×

r
× IRm , /

\ ⋅, ⋅ \
/ L i

N
, || ⋅ ||L i

N
) , i = 1, 2 , N ∈∈ IN ,

where the inner products and norms are chosen so that for any u, v ∈∈ L i
N , with

u(t) = ΣN,r
j=1,k=1 uk, j Φi

N, j ,k(t) and v(t) = ΣN,r
j=1,k=1 vk, j Φi

N, j ,k(t) , t ∈∈ [0, 1],

(4.5f)/
\ u, v \

/ 2 = /
\ u, v \

/ L i
N

, ||u||2 = ||u||L i
N
,

whereu ∈∈
N
×

r
× IRm is defined in (4.5b,c).The spacesL i

N will be needed to define gradients for

the cost and constraint functions of the approximating problems as well as in setting up numerical

implementations of optimal control algorithms.Figure 4.1, which follows the definitions ofL i
N

below, illustrates the relationship between the various control spaces.

The reason that we choose anL2 norm preserving, nonstandard inner product onL i
N is that

if we use the standardl2 inner product and norm onL i
N (as is commonly done), we might, unwit-

tingly, cause serious deterioration in the performance of numerical algorithms which solve the

approximating problems in the coefficient spacesL i
N . The extent of this ill-conditioning effect is

illustrated in Section 6.Of course, if our basis forLN had been orthonormal, then standardl2

inner product would be the appropriate choice.The purpose of defining different control repre-

sentations is first, that the solutions of the approximating problems have different properties for

the different representations (this is discussed at the end of this section) and, second, some results

for the second representation are used to provide results for the first representation (Conjecture

5.11 and formula (7.19b)).

- 24 - Chap. 2

Representation R1

(Piecewiser -th order polynomials)

Assumption 4.3. For all i ∈∈ s, ci ∈∈ [0, 1].

For eachk ∈∈ D , define the sub-intervalsT1
k =. [tk, tk+1) and define pulse functions

(4.6a)Π1
N,k(t) =.

î

1

0

if t ∈∈ T1
k

elsewhere .

Then, define the finite dimensional control subspaceL1
N as follows:

(4.6b)L1
N =. { u ∈∈ Lm

2 [0, 1] |u(t) =
N−1

k=0
Σ

r

j=1
Σ uk, j Φ1

N,k, j (t) , uk, j ∈∈ IRm, \/ t ∈∈ [0, 1] } ,

where

(4.6c)Φ1
N,k, j (t) =. M N,k, j Π1

N,k(t) , k ∈∈ D ,

with
M

N,k, j (t) the j -th Lagrange polynomial for the points{ N k,i j
} r

j=1, i j ∈∈ I , defined by

(4.6d)
M

N,k, j (t) =.
r

l = 1

l≠ j

Π
(t − N k,i l)

(N k,i j
− N k,i l)

, k ∈∈ D , j ∈∈ r ,

with the property that
M

N,k, j (N k,i l) = 1 if l = j and
M

N,k, j (N k,i l) = 0 if l ≠ j . By construction of the

set I , i l , i j ∈∈ I implies thatN k,i j
≠ N k,i l if l ≠ j . Hence, the functions

M
N,k, j (⋅) are well-defined,

and the functionsΦ1
N,k, j (⋅) are linearly independent.The function

M
N,k, j (t) is thus the uniquer -th

order polynomial that interpolates{ (N k,i j
, uk, j) } r

j=1 on the interval [tk, tk+1]. The control sam-

ples forL1
N are given by

(4.6e)u[N k,i] =.

î

u(N k,i)

lim t↑ O k,i
u(t)

if N k,i ∈∈ T1
k

if N k,i = t k+1
, k ∈∈ D , i ∈∈ I .

Proposition 4.4. Let L1
N be defined as in (4.6b) and define the map

V1
A,N : L1

N →
N
×

r
× IRm

(4.6f)u |→ {{ u[N k,i j
] } r

j=1 } N−1
k=0 , i j ∈∈ I ,

with u[⋅] giv en by (4.6e). SupposeAssumption 4.3 holds.ThenV1
A,N is invertible.

Proof. Let u(t) = ΣN−1
j=0 Σr

k=1 uk, j Φ1
N,k, j (t) be an arbitrary element ofL1

N . Assumption 4.3

implies thatN k,i j
∈∈ T1

k . Next, it follows from (4.6e), thatu[N k,i j
] = Σr

j=1 uk, j
M

N,k, j (N k,i j
) = uk, j ,

because of the interpolation property of Lagrange polynomials.HenceV1
A,N is invertible.

- 25 - Chap. 2

The polynomial pulse functions{ Φ1
N,k, j (t) } N−1,r−1

k=0, j=0 are linearly independent, but they are

neither orthogonal nor normal with respect to theL2 inner product and norm.To complete the

definition of the spacesL1
N in (4.5e), we will now define the required inner product, which, in

turn, defines the norm.First, letu ∈∈ L1
N and note that we can write eachr -th order polynomial

pieceΣr
j=1 uk, j P N,k, j (t) in (4.6b) as a power seriesQ kP(t − tk), where Q k is anm× r matrix of

coefficients and the functionP : IR → IRr is defined by

(4.7)P(t) =. [1 t/∆ . . .(t/∆)r−1]T .

If u = V1
A,N(u), then from Proposition 4.4,uk, j = Q kP(ci j

∆), j ∈∈ r , i j ∈∈ I . Hence,

uk = [uk,1
. . .uk,r] = Q kT−1 where

(4.8)T−1 =.

P(ci1∆) P(ci2∆) . . .P(ci r ∆)

=

1

ci1...
cr−1

i1

1

ci2

cr−1
i2

. . .

. . .

1

ci r

cr−1
i r

 r × r

.

The matrixT−1 is a Vandermonde matrix and ther valuesci j
, i j ∈∈ I , are distinct. Therefore,T−1

is non-singular andQ k = ukT. Hence, for eachk ∈∈ D , u(t) = ukTP(t − tk) for t ∈∈ [tk, tk+1).

We now define the inner product between two vectorsu, v ∈∈ L1
N , with u = (V1

A,N)−1(u) and

v = (V1
A,N)−1(v), by

/
\ u, v \

/ L1
N

= /
\ u, v \

/ 2 =
N−1

k=0
Σ ∫

∆

0

/
\ u(tk + t), v(tk + t) \

/ dt

=
N−1

k=0
Σ ∫

∆

0

/
\ uk T P(t), vk T P(t) \

/ dt

= ∆
N−1

k=0
Σ trace(uk T

1

∆ ∫
∆

0
P(t) P(t)T dt TT vT

k) ,

(4.9a)= ∆
N−1

k=0
Σ trace(uk M1 vT

k) ,

whereT was defined by (4.8),P(⋅) was defined in (4.7), and

(4.9b)M1 =. T

1

∆ ∫
∆

0
P(t) P(t)T dt

TT = T Hilb(r) TT ,

is anr × r symmetric, positive definite matrix with

- 26 - Chap. 2

(4.9c)Hilb(r) =

1

1/2

1/3

1/r

1/2

1/3

1/4
...

1/(r + 1)

1/3

1/4

1/5

. . .

. . .

1/r

1/(r + 1)

1/(2r − 1)

 r × r

the Hilbert matrix whosei , j -th entry is 1/(i + j − 1). Note that both Hilb(r) and T are ill-

conditioned matrices.However, the product in (4.9b) is well-conditioned (the product corre-

sponds to switching from the power-series polynomial representation back to the Lagrange expan-

sion). Thematrix M1 is positive definite because Hilb(r) is positive definite andT is non-

singular. Giv en u ∈∈ L1
N , its norm is ||u||2

L1
N

= /
\ u, u \

/ L1
N

. Finally, if we define theN-block diago-

nal matrix

(4.9d)M N =. diag[∆0M1 , ∆1M1 , . . . ,∆N−1M1] ,

with ∆k =. tk+1 − tk = 1 / N (in this chapter), then we can express the inner product given by (4.9a)

more succinctly as

(4.9e)/
\ u, v \

/ L1
N

= /
\ uM N , v \

/ l2 = trace(uM NvT)

We hav eintroduced the notation of∆k here in anticipation of using non-uniform meshes in later

chapters.

Remark 4.5. A special class of functions within representationR1 is the subspace ofr -th

order, m dimensional splines[63]. Thedimension of the spline subspace is only a fraction of the

dimension ofL1
N . Our results forR1 can be extended to splines; this extension is presented Sec-

tion 7.

Representation R2

(Piecewise constant functions)

For j ∈∈ r , I j defined in (4.4b), let

(4.10a)b
∼

j =.
i ∈∈ I j

Σ bi ,

(4.10b)d j =. ∆
j

i=1
Σ b

∼
i , d0 =. 0 .

If all the ci elements of the Butcher array have distinct values thend j = ∆Σ j
i=1 bi . At this point,

we can replace Assumption 4.1 with the following weaker assumption:

Assumption 4.1’ For all j ∈∈ r , b
∼

j > 0 anddr = ∆.

- 27 - Chap. 2

Note that Assumption 4.1’ implies that for allj ∈∈ r , d j > d j−1, and that tk + d j ∈∈ [tk, tk+1],

k ∈∈ D .

Next, we introduce one additional assumption which is stronger than Assumption 4.3 used

for representationR1.

Assumption 4.6. For j ∈∈ r andi j ∈∈ I , d j−1 ≤ ci j
∆ ≤ d j , so that R k,i j

∈∈ [tk + d j−1, tk + d j].

Now, for eachk ∈∈ D and j ∈∈ r , define the sub-intervals T2
k, j =. [tk + d j−1, tk + d j) and let the

basis functionsΦ2
N,k, j : IR → IR be defined by

(4.11a)Φ2
N,k, j (t) =.

î

1

0

if t ∈∈ T2
k, j

elsewhere .

Then, define the finite dimensional control subspaceL2
N as follows:

(4.11b)L2
N =. { u ∈∈ Lm

2 [0, 1] | u(t) =
N−1

k=0
Σ

r

j=1
Σ uk, j Φ2

N,k, j (t) , uk, j ∈∈ IRm, \/ t ∈∈ [0, 1] } .

The control samples forL2
N are given by

(4.11c)u[R k,i j
] =.

î

u(R k,i j
)

lim t↑S k,i j
u(t)

if R k,i j
∈∈ T2

k, j

if R k,i j
= t k + d j

, k ∈∈ D , i j ∈∈ I , j ∈∈ r .

Proposition 4.7. Let L2
N be defined as in (4.11b) and define the map

V2
A,N : L2

N →
N
×

r
× IRm

(4.11d)u |→ {{ u[R k,i j
] } r

j=1 } N−1
k=0 , i j ∈∈ I ,

with u[⋅]given by (4.11c). SupposeAssumptions 4.1’ and 4.6 hold.ThenV1
A,N is invertible.

Proof. Assumption 4.1’ ensures that the support for eachΦ2
N,k, j (⋅) is of nonzero length.This

ensures a one-to-one correspondence between the elements ofL2
N and the vector coefficientsuk, j ,

in (4.11b). Next, Assumption 4.6 together with definition (4.11c) ofu[⋅] implies that for any

u ∈∈ L2
N , with u(t) = ΣN−1

k=0 Σr
j=1 uk, j Φ2

N,k, j (t), u[R k, j] = uk, j for all k ∈∈ D and j ∈∈ r . Hence,

V2
A,N is invertible.

To complete the definition, in (4.5e), of the spacesL2
N we will now define the required inner

product and norm. We define the inner product between two vectors u, v ∈∈ L2
N , with

u = (V2
A,N)−1(u) and v = (V2

A,N)−1(v), by

/
\ u, v \

/ L2
N

= /
\ u, v \

/ 2 =
N−1

k=0
Σ

r

j=1
Σ ∫

d j

d j−1

/
\ u(tk + t), v(tk + t) \

/ dt

- 28 - Chap. 2

= ∆
N−1

k=0
Σ

r

j=1
Σ b

∼
j

/
\ uk, j , vk, j

\
/ dt

(4.12a)= ∆
N−1

k=0
Σ trace(uk M2 vk) ,

where,

(4.12b)M2 =

b
∼

1

0

. . .

0

b
∼

r

.

Since allb
∼

j > 0, M2 is diagonal, positive definite. Given u ∈∈ L2
N , its norm is ||u||2

L2
N

= /
\ u, u \

/ L2
N

.

Finally, if we define theN-block diagonal matrix

(4.12c)M N =. diag[∆0M2 , ∆1M2 , . . . ,∆N−1M2] ,

with ∆k =. tk+1 − tk = 1 / N (in this chapter), then we can express the inner product given by

(4.12a) more succinctly as

(4.12d)/
\ u, v \

/ L2
N

= /
\ uM N , v \

/ l2 = trace(uM NvT) .

Remark 4.8. In place of (4.10b), we could have used the alternate definitiond j =. ∆Σ j
i=1 bi

and setuk, j = u[T k, j] for all j ∈∈ s, k ∈∈ D . In this way, samples corresponding to repeated values

of c j in the Butcher array would be treated as independent values and the spaceLN would have to

be correspondingly enlarged. However, Proposition 6.2 in Section 6 indicates that (4.10b) is the

preferable definition.

The relationship between the spacesLm
∞,2[0, 1], LN andLN and the relationship between a func-

tion u ∈∈ L1
N and its control samplesu = VA,N(u) are illustrated in Figure 4.1.

2.4.2 Definition of Appr ox imating Pr oblems

For N ∈∈ IN, let

(4.13a)HN =. IRn × LN ,

whereLN = L 1
N for representationR1 or LN = L 2

N for representationR2. Since HN ⊂ H∞,2, it

inherits the inner product fromH∞,2 which, for U ′, U ′′ ∈∈ HN , with U ′ = (V ′, u′) and U ′′ = (V ′′ , u′′),

is given by

(4.13b)/
\ U ′, U ′′ \

/ H =. /
\ V ′, V ′′ \

/ + /
\ u′, u′′ \

/ 2 .

Also, for any U ∈∈ HN , ||U ||2H = /
\ U , U \

/ H . Similarly, for N ∈∈ IN, we define the coefficient spaces

- 29 - Chap. 2

u ∈∈ LN
1

∆

tk+1tktk−1

VA,N
−1

VA,NLN

L ∞,2

L
W
N

u uX

u ∈∈ LN
2

tk+1tktk−1

τk ,3τk ,2τk ,1

τk ,3τk ,2τk ,1

uY k ,3

uZ k ,2

u[k ,1

u\ k ,3

u] k ,2

ûk ,1

Fig. 4.1: The diagrams above depict the relationship between the various control spaces.On top, the map
VA,N , which is a bijection, identifies control functions in the finite dimensional spacesLN with their control
samples in the coefficient spacesLN . The spacesLN are subsets of the infinite dimensional spaces
Lm

∞,2[0, 1]. The two bottom plots show a portion of a single control,u ∈∈ LN for an RK method with
c = (0, 1

2 , 1
2) and b = (1

6 , 2
3 , 1

6). Sincer = 3 there are three control samples per interval. Themiddle plot
shows u ∈∈ L1

N ; u is composed of third order polynomial pieces.The bottom plot shows u ∈∈ L2
N ; u is

piecewise constant.For the k-th interval the samples are taken at times_ k, j = t k + c j ∆, j = 1, 2, 3,where
∆ = 1/N is the step-size.Notice that the samples at_ k,1 and _ k,3 occur at points of discontinuities inu(⋅).
The definition of the control samples,uk, j = u[_ k, j], ensures that the samples on thek-th interval are taken
from thek-th polynomial piece foru ∈∈ L1

N , and for u ∈∈ L2
N , the k, j -th sample is taken from thek, j -th

piece. Note that this picture would look exactly the same for a four stage RK methods withc = (0, 1
2 , 1

2 1)

andb = (1
6 , 1

3 , 1
3 , 1

6) since, in this case, there is a repeated sampling time (c2 = c3 andb
∼

2 = 2
3).

- 30 - Chap. 2

HN by

(4.14a)HN =. IRn × LN ,

whereLN = L 1
N or LN = L 2

N . The inner product onHN is defined by

(4.14b)/
\ ` ′, ` ′′ \

/ HN
=. /

\ a ′, a ′′ \
/ + /

\ u′, u′′ \
/ LN

,

and the norm correspondingly. LetWA,N : H N → HN be defined byWA,N(`) = (a ,V1
A,N(u)) for repre-

sentationR1 and WA,N (̀) = (a ,V2
A,N(u)) for representationR2, where ` = (a , u). Then we see that

WA,N is a nonsingular map and, with our definition of the norms onHN , provides an isometric isomor-

phism betweenHN andHN . Thus, we can use the spacesHN andHN interchangeably.

Next, we define control constraint sets for the approximating problems, as follows. LetU

be the convex, compact set used to defineU in (3.3a). Then, withb U < ∞, we define

(4.15a)U1
N =. { u ∈∈ L1

N | uk, j ∈∈ U , j ∈∈ r , ||ukT j ||∞ ≤
∆

(j −1)(r −1)
b U , j = 2, . . . ,r \/ k ∈∈ c }

(4.15b)U2
N =. { u ∈∈ L2

N | uk, j ∈∈ U \/ j ∈∈ r , k ∈∈ c } ,

whereT j is the j -th column of the matrixT, defined by its inverse in (4.8), and∆ = 1/N, as

before. Finally, we define the constraint sets for the approximating problems by

(4.15c)HN =. IRn × V−1
A,N(UN) ⊂ HN ,

and their reflections in coefficient space:

(4.15d)HN =. IRn × UN ⊂ HN ,

with UN = U1
N andVA,N = V 1

A,N for representationR1 andUN = U2
N andVA,N = V 2

A,N for repre-

sentationR2. We assume thatd max was chosen large enough in (3.3c) to ensure thatHN ⊂ B.

Remark 4.9. The constraints on ||ukT j ||∞ appearing in the definition ofU1
N were introduced to

ensure that each polynomial piece,Σr
j=1 uk, j Φ1

N,k, j (⋅), of u = V−1
A,N(u) is Lipschitz continuous on

[tk, tk+1] with Lipschitz constantb U , independent ofN. That is, ||uN(e 1) − uN(e 2)|| ≤ b U for all

e 1, e 2 ∈∈ [tk, tk+1], k ∈∈ D . This piecewise Lipschitz constant is needed to establish that the accu-

racy of the RK integration increases at least linearly with decreasing step-size (Lemma A.1 and

Lemma 4.10(i), but see Remark A.2).The need for this piecewise Lipschitz continuity is demon-

strated in Remark 4.13.In the next section we will show that the control samples of solutions to

the approximating problems we define do not depend on the control representation (Proposition

5.5). Becauseof this, we will conjecture (Conjecture 5.11) that the piecewise Lipschitz continu-

ity constraints in the definition ofU1
N can be dispensed with if the assumptions required for the

approximating problems defined with control representationR2 (which are strong assumptions

- 31 - Chap. 2

than those required for representationR1) are met.

Next, with f = (g , u) ∈∈ HN and f = (g , u) = WA,N(f), we will denote the solutions of

(4.3a,b), withh k = ukG, k ∈∈ D , by { xik } N
k=0 or, equivalently, { xik } N

k=0. The variablexik is thus

the computed estimate ofxi N (tk). Finally, for j ∈∈ q, let f kN : H N → IR and f kN : H N → IR be

defined by

(4.16)f kN(f) =. l k (g , xiN) f kN(f) =. l k (g , xiN) , j ∈∈ q ,

where
l k (⋅, ⋅) was used to definef k (⋅) in (3.4c). We can now state the approximating problems

as:

(4.17a)i ∈∈ HN

min { m o,N(f) | m c,N(f) ≤ 0 } ,CPN

wherem o,N(f) =. k ∈∈ qo

max f kN(f) and m c,N(f) =. k ∈∈ qc+qo

max f kN(f), or equivalently, in the form in which

they must be solved numerically:

(4.17b)i ∈∈ HN

min { m o,N(f) | m c,N(f) ≤ 0 } ,CPN

where m o,N(f) =. k ∈∈ qo

max f kN(f) and m c,N(f) =. k ∈∈ qc+qo

max f kN(f). By defining the feasible set

FN =. { f ∈∈ HN | m c,N(f) ≤ 0 } , we can write CPN in the equivalent form of problemPN in

(2.1b).

Note that for any u ∈∈ U ∩ L i
N , i = 1, 2,whereU was defined in (3.3a),u = V i

A,N(u) satis-

fies uk, j ∈∈ U , for k ∈∈ D , j ∈∈ r , becauseu(t) ∈∈ U for all t ∈∈ [0, 1]. Hence, for representation

R2, (4.15b,c) imply thatH ∩ HN ⊂ HN . Conversely, u ∈∈ U2
N <==> (V2

A,N)−1(u) ∈∈ U, and there-

fore HN ⊂ H ∩ HN . Consequently, for representationR2, HN = H ∩ HN . Unfortunately, for

representationR1 HN ≠ H ∩ HN . First, H ∩ HN ⊂/ HN because elementsu ∈∈ U ∩ L1
N do not

necessarily satisfy the Lipschitz continuity constraint imposed by (4.15a).Second, if r ≥ 2

(except for the caser = 2 and the Butcher array elementsc = (0, 1)), HN ⊂/ H ∩ HN because,

given u ∈∈ L1
N , generally ||V1

A,N(u)||∞ > ||u||∞, [63, p. 24]. Hence, if { f N = (g N , uN) } N ∈∈ N,

N ⊂ IN, is a sequence of approximate solutions to the problemsCPN using representationR1, it

is possible for theuN to violate the control constraints inCP. Howev er, as we will see, the limit

points of such a sequence do satisfy the control constraints inCP. This problem of constraint

violations for representationR1 could have been avoided by choosingHN =. H ∩ HN (as in[43])

and lettingHN =. WA,N(HN), but the setHN would then be difficult to characterize and we would

have to impose a Lipschitz continuity constraint directly on the setH, which would be unaccept-

able.

- 32 - Chap. 2

Nesting. The theory of consistent approximations is stated in terms of nested subspacesHN .

This allows the approximate solution of an approximating problemCPN1
to be used as a "warm-

start" for an algorithm solving an approximating problemCPN2
with a higher discretization level

(N2 > N1) (see [55,57]).

For representationR1, for any N ∈∈ IN, N ≥ 1, L1
N ⊂ L1

2N , and therefore doubling the dis-

cretization level nests the subspaces.If u ∈∈ L1
N , then v = V1

A,2N(u) can be determined from

u = V1
A,N(u) using (4.7) and (4.8), as follows. For k ∈∈ D and j ∈∈ r , v j

2k = uk T P(c j / 2N) and

v j
2k+1 = uk T P((c j + 1) / 2N). For representationR2, L2

N ⊂ L2
dN whered is the smallest common

denominator of the parametersb j , j ∈∈ s, in the Butcher array, which is finite assuming, as is typi-

cally the case, that theb j are rational.Thus, the discretization level must be increased by factors

of d to achieve nesting. If u ∈∈ L2
N and u = V2

A,N(u), then v = V2
A,dN(u) is giv en, for k ∈∈ D ,

i , j ∈∈ r , and l = 1, . . . ,d, by vi
dk+l = uk, j for d j−1 ≤ l / d < d j , whered j is defined in (4.10b).

2.4.3 Epicon vergence

We are now ready to establish epiconvergence of the approximating problems.First we present

convergence properties for the solutions computed by Runge-Kutta integration onHN . The proof

of the following lemma, given in the Appendix A, differs from standard Runge-Kutta results

because of the presence of (possibly discontinuous) controls in the differential equations.

Lemma 4.10. For representationR1, suppose that Assumptions 3.1(a), 4.1’ and 4.3 hold.For

representationR2, suppose that Assumptions 3.1(a), 4.1’, and 4.6 hold.

(i) Convergence. For any bounded subsetS⊂ B, there exist n < ∞ and N * < ∞, such that

for any o ∈∈ S ∩ HN andN ≥ N *,

(4.18a)||xp (tk) − xpk|| ≤
n
N

, k ∈∈ { 0, 1, . . . ,N } .

(ii) Order of Convergence. Additionally, suppose the Runge-Kutta method is orderq ,

(see [61,62]) and h(⋅, ⋅) is q −1 times Lipschitz continuously differentiable. Let

(4.18b)H(r)
N =. { o = (s , u) ∈∈ HN | ||

d r −1

dt r −1
(u(t1) − u(t2))|| ≤ n ′ \/ t1, t2 ∈∈ [tk, tk+1) , k ∈∈ D }

where n ′ < ∞ is independent ofN. Then for representationR1, there exist n < ∞ and N* < ∞
such that, if eithero ∈∈ S ∩ H(r)

N , or if o ∈∈ S ∩ HN andh(x, u) = h
∼

(x) + Bu, whereB is ann× m

constant matrix, then for any N ≥ N* ,

(4.18c)||xp (tk) − xpk|| ≤
n

N r , k ∈∈ { 0, 1, . . . ,N } .

Bound (4.18c) also holds for representationR2 for any o ∈∈ S ∩ HN if h(x, u) = h
∼

(x) + Bu.

- 33 - Chap. 2

In proving consistency, we will need to add a version of Slater’s constraint qualification on the

problemCP.

Assumption 4.11. For every t ∈∈ H such thatu c(t) ≤ 0, there exists a sequence{ t i } ∞
i=1 such

that t i ∈∈ H, u c(t i) < 0, and t i → t asi → ∞.

Theorem 4.12 (Epiconvergence). For representationR1, suppose that Assumptions 3.1, 4.1’,

4.3 and 4.11 hold and letd = 2. For representationR2, suppose that Assumptions 3.1, 4.1’, 4.6

and 4.11 hold and letd be the least common denominator for the elementsb j , j ∈∈ s, of the

Butcher array. Let N = { dl } ∞
l=1. Then, the problems{ CPN } N ∈∈ N converge epigraphically to

the problemCP asN → ∞.

Proof. Let S⊂ B be bounded.Then, by Assumption 3.1(b) and Lemma 4.10(i), there existv ′, v < ∞ such that for any w ∈∈ q and for any t N ∈∈ S ∩ HN ,

(4.19a)| f x (t N) − f xN(t N)| = |y x (z N , x{ N (1)) − y x (z N , x{ N
N)| ≤ v ′ ||x{ N (1) − x{ N

N || ≤
v
N

.

Now, let w ′ ∈∈ qo be such thatu o(t N) = f x ′(t N) . Then,

(4.19b)u o(t N) − u o,N(t N) = f x ′(t N) − u o,N(t N) ≤ f x ′(t N) − f x ′
N (t N) ≤

v
N

.

By reversing the roles ofu o(t N) and u o,N(t N) we can conclude that

(4.20a)|u o(t N) − u o,N(t N)| ≤
v
N

.

Similarly,

(4.20b)|u c(t N) − u c,N(t N)| ≤
v
N

.

Now, giv en t ∈∈ H such that u c(t) ≤ 0, there exists, by Assumption 4.11, a sequence

S = { t i } i ∈∈ N, with t i ∈∈ H, such that t i → t as i → ∞ (hence S is a bounded set), and

u c(t i) < 0 for all i . Now, clearly for eachi , there exists Ni ∈∈ N and t ′Ni
∈∈ HNi

such that(a)v / Ni ≤ − 1/2u c(t i), (b) ||t Ni
′ − t i || ≤ 1 / Ni , since, for both control representations, the union of

the subspacesHN is dense in H2 which contains H∞,2 and H ∩ HN ⊂ HN , (c)

u c(t Ni
′) ≤ 1/2u c(t i) due to Theorem 3.2(iii) , and (d) Ni < Ni+1. It follows from (4.20b) that

u c,Ni+k
(t Ni

′) ≤ u c(t Ni
′) + v / Ni ≤ 1/2u c(t i) + v / Ni ≤ 0 for any i , k ∈∈ IN. Now consider the

sequenceS′′ = { t M ′′ } M ∈∈ N defined as follows: if M = Ni for somei ∈∈ N, then t M ′′ = t Ni
′ for

M = Ni , Ni + d, Ni + 2d, . . . ,Ni+1 − d. Then we see thatu c,M (t M ′′) ≤ 0 for all M ∈∈ N,

t M ′′ → t as M → ∞ (hence S′′ is bounded), and by (4.20a) and Theorem 3.2(iii) that

limM ∈∈ N u o,M (t M ′′) = u o(t). Thus,part(a) of Definition 2.1 is satisfied.

- 34 - Chap. 2

Now let S = { | N } N ∈∈ K , K ⊂ N, be a sequence with | N = (} N , uN) ∈∈ HN and~
c,N(| N) ≤ 0 for all N ∈∈ K , and suppose that| N →K | = (} , u). First, we want to show that

| ∈∈ H. For any v ∈∈ IRm, let d(v,U) =. minv′ ∈∈ U ||v − v′||. Since u = V i
A,N(uN) ∈∈ Ui

N , i = 1, 2,

for each N, uk, j ∈∈ U for all k ∈∈ D , j ∈∈ r . For representation R1,

lim t ∈∈ [0,1],N ∈∈ K d(uN(t),U) = 0 since elements,uN ∈∈ U1
N are piecewise Lipschitz continuous

polynomials, with Lipschitz constant independent ofN, defined over progressively smaller

intervals†. For representationR2, d(uN(t),U) = 0 for all N ∈∈ N andt ∈∈ [0, 1] sinceuN ∈∈ U2
N is

piecewise constant.This implies thatu ∈∈ U; hence | ∈∈ H. Furthermore,~ c(|) ≤ 0 by (4.20b)

and the continuity of~ c(⋅). Finally, by (4.20a) and Theorem 3.2(iii) , limN ∈∈ K
~

o,N(| N) = ~
o(|).

Thus, part(b) of Definition 2.1 holds.

Remark 4.13. In [42], Hager empirically observes that RK methods withb j = 0 for some j ,

such as the modified Euler method, cannot be used to discretize optimal control problems.This

requirement, formalized in Assumption 4.1, is used in our proof of epiconvergence. However, for

RepresentationR1, epiconvergence ofPN to P can be established even if, for some j , b
∼

j ≤ 0.

This is because of the Lipschitz continuity constraint imposed on the setU1
N in (4.15a).

Nonetheless, our experimental evidence suggests that using an RK method withb
∼

j ≤ 0 is

unwise. For example, the three stage, third order RK method with Butcher array

0
1
4

1
4

1 − 7
5

12
5

− 1
6

8
9

5
18

was used to discretize the problem described in Section 6 at discretization level N = 10. The

solutionsuN* for different values of Lipschitz constant� U are plotted in Figure 4.2a.For com-

parison, the solutions of the approximating problems produced with the third order RK method

with Butcher array

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

are presented in Figure 4.2b. For both, with � U small, the quadratic polynomial pieces in each

time interval are forced to be fairly flat. But, as � U is increased, the solutions for the ‘‘bad’’

† It can also be shown by contradiction thatd(uN(⋅),U) → 0 a.e. on[0, 1] without requiring, in (4.15a), elements ofU1
N to have

a uniform piecewise Lipschitz constant.

- 35 - Chap. 2

method become increasingly worse and the control solutions remain pushed against the Lipschitz

continuity constraints.On the other hand, the solutions for the ‘‘good’’ method become better as�
U in increased.In fact, when� U is bigger than the Lipschitz constant of the true solutionu* , the

Lipschitz continuity constraints are inactive for the ‘‘good’’ method (see Remark 4.9).This is

seen in Figure 4.2b since the solutions for�
U = 1 and � U = 10 are identical.As � U is increased

from 0.1 to 10, the error maxk, j |uN
* [� k, j] − u* (� k, j)| goes from 0.0332 to 7.9992e-4 for the

‘‘ good’’ method and goes from 0.0332 to 1.9119 for the ‘‘bad’’ method.

The conditions imposed by Assumptions 4.3 and 4.6 on thec parameters of the Butcher

array are needed because of the discontinuities in the controlsu ∈∈ L i
N , i = 1, 2.

2.4.4 Factor s in Selecting the Contr ol Representation

The choice of selectingLN = L 1
N versusLN = L 2

N depends on the relative importance of approx-

imation error versus constraint satisfaction. Itfollows from the proof of epiconvergence, that irre-

spective of which representation is used, if{ � N } N ∈∈ N is a sequence such that� N ∈∈ HN , and

� N → � , then � ∈∈ H. Thus � satisfies the control constraints.However, as mentioned earlier, if

representationR1 is used, then� N may not satisfy the control constraints for any finite N (except

for the caser = 2 and c = (0, 1)). Since a numerical solution must be obtained after a finite num-

ber of iterations, representationR2 should be used if absolute satisfaction of control constraints is

required.

If some violation of control constraints is permissible, then representationR1 may be

preferable to representationR2 (although, see comment about transformation of simple control

bounds in Section 6) because a tighter bound for the error of the approximate solution can be

established forR1 than forR2. To see this, let� N* = (� * N , uN*), N ∈∈ IN, be a local minimizer of

the finite-dimensional problemCPN . This solution is computed by setting� N* = W−1
A,N(� N

*),

where � N
* is the result of a numerical algorithm implemented on a computer using the formulae

to be presented in the following sections.The error, ||u* − uN* ||2, of the approximate control solu-

tionsuN* can be determined as follows. AssumethatuN* → u* asN → ∞ and thatu* is a local

minimizer of CP (if the uN* solutions are uniformly strict minimizers thenu* must be a local

minimizer by Theorem 2.2).Let u* ∈∈
N
×

r
× IRm be such thatu* k, j = u* (� k, j), for k ∈∈ D , j ∈∈ r

(assumingu* (� k, j) exists). Then,with uN* = VA,N(uN*),

(4.21)||u* − uN* ||2 ≤ ||u* − V−1
A,N(u*)||2 + ||V−1

A,N(u*) − uN* ||2 = ||u* − V−1
A,N(u*)||2 + ||u* − uN* ||LN

.

By Proposition 5.5 in the next section, the quantity ||u* − uN* ||LN
is not affected by the choice of

control representations.For smooth, unconstrained problems discretized by symmetric RK meth-

ods, a bound for ||u* − uN* ||∞ can be found in[57, Thm. 3.1] (see Proposition 6.2 in for an

- 36 - Chap. 2

 = 0.1

 = 1

 = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time

C
on

tro
l S

ol
ut

io
n

of
 D

is
cr

et
iz

ed
 P

ro
bl

em
κκ
κ
κ
κ

U

U

U
κ

Fig. 4.2a: Effect of the Lipschitz constant� U on the solution of problem (6.3) discretized with an
RK method that satisfies the Assumptions of Theorem 4.12 but hasb1 < 0. The solution gets
worse as� U is increased.

 = 0.1

 = 1

 = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

Time

C
on

tro
l S

ol
ut

io
n

of
 D

is
cr

et
iz

ed
 P

ro
bl

em

κκ

κ

κ

κ U

U

κ
U

Fig. 4.2b: Effect of the Lipschitz constant� U on the solution of problem (6.3) discretized with an
RK method that has allb j > 0. The solution gets better as� U is increased until the point where
the Lipschitz continuity constraints onuN

* become inactive, as is the case for� U = 1 and� U = 10.

- 37 - Chap. 2

improved bound for RK4). The quantity ||u* − V−1
A,N(u*)||2 is the error betweenu* and the element

of L1
N or L2

N that interpolatesu* (t) at t = � k, j , k ∈∈ D and j ∈∈ r . The piecewise polynomials of

representationR1 are generally better interpolators foru* (⋅), except near non-smooth points, than

the functions ofR2. For u* (⋅) sufficiently smooth, ||u* − V−1
A,N(u*)||∞ is of orderr for representa-

tion R1 (see [63]), but only first order for representationR2.

2.5 OPTIMALITY FUNCTIONS FOR THE APPROXIMATING PROBLEMS

In order to develop optimality functions for our approximating problems, we must deter-

mine the gradients of the cost and constraint functions for the approximating problems.

2.5.1 Computing Gradients

At each time step, the RK integration formula is a function of the current state estimatexk and the

r control samplesuk = (uk,1, . . . ,uk,r). So,let F : IRn × (
s
× IRm) → IRn be defined by

(5.1)F(x, w) = x + ∆
s

i=1
Σ bi Ki (x, wG) ,

wherew = (w1, . . . ,wr) ∈∈
r
× IRm is being treated as them× r matrix [w1

. . .wr], G was defined

in (4.5d), andKi (x, �) was defined in (4.3b) (with� = wG ∈∈ IRm× s). Then, referring to

(4.3a,b), we see that for any � = (� , u) ∈∈ HN , with HN defined in (4.14a),

(5.2)x�k+1 = F (xk, uk) , x0 = � , k ∈∈ D .

The derivative of F(⋅, ⋅) with respect to thej -th component ofw is, with I j defined in (4.4b),

Fw j
(x, w) = ∆

∂
∂w j

s

i=1
Σ bi Ki (x, wG)

= ∆
l ∈∈ I j

Σ ∂
∂ � l

s

i=1
Σ bi Ki (x, �)

(5.3a)= ∆
l ∈∈ I j

Σ

bl hu(Yl (x, �), w j) + ∆

s

i=1
Σ bi hx(Yi (x, �), � i)

i−1

p = 1
Σ ∂

∂ � l
K p (x, �)

,

where� = wG andYi (x, �) =. x + ∆Σi−1
j=1 ai , j K j (x, �).

The next theorem provides an expression for the gradients of the functionsf �N(⋅), � ∈∈ q,

given by (4.16). For � = (� , u) ∈∈ H, we will use the notationd� fN(�) =. d
d� fN(�) and

- 38 - Chap. 2

(5.3b)du fN(�) =.

d

du0,1
fN(u) . . . d

du0,r
fN(u) . . . d

duN−1,1
fN(u) . . . d

duN−1,r
fN(u)

,

to indicate the derivative with respect to� and the discrete-time derivative with respect to the con-

trol samplesu = VA,N(u), of fN(WA,N(�)). Notethat du fN(�) ∈∈ IRm× Nr is a ‘‘short-fat’’ matrix.

Theorem 5.1 (Gradients of Approximating Functions). Let N ∈∈ IN, � ∈∈ HN and

� = WA,N(�). Also, let M N ∈∈ IRNr × Nr be theN-block diagonal matrix defined by

(5.4)M N =. diag[∆0M , ∆1M , . . . ,∆N−1M] ,

where M = M1 for representationR1 and M = M2 for representationR2, and again, we intro-

duce the notation∆k =. tk+1 − tk in anticipation of using non-uniform meshes in later chapters.

Then, for each� ∈∈ q, the gradient off �N(⋅), ∇ f �N : H N → HN , is giv en by

(5.5a)∇ f �N(�) = (∇ � f �N(�), ∇ u f �N(�)) = (d� f �N(�) ,V−1
A,N(du f �N(�) M−1

N))

where VA,N = V 1
A,N for representation R1, VA,N = V 2

A,N for representation R2 and

d f �N(�) =. (d� f �N(�), du f �N(�)) ∈∈ HN is defined by

(5.5b)d� f �N(�) = ∇ � � � (� , x�N) + p� ,�0 ,

(5.5c)du f �N(�)k, j = F w j
(x�k, uk)T p� ,�k+1 , k ∈∈ D , � ∈∈ r ,

with p� ,�k determined by the adjoint equation

(5.5d)p� k = F x(x�k, uk)T p� k+1 ; p�N = � �x (� , x�N)T , k ∈∈ D ,

and whereFx(⋅, ⋅) and Fw j
(⋅, ⋅) denote the partial derivatives of F(x, w) with respect tox and the

j -th component ofw.

Proof. First, we note thatV1
A,N is invertible by Proposition 4.4 andV2

A,N is invertible by Propo-

sition 4.7. Next, referring to[2, p. 68], we see thatd� f �N(�) is the gradient off �N(�) with respect

to � . Similarly, du f �N(�) is the gradient off �N(�) with respect tou ∈∈
N
×

r
× IRm using the standard

l2 (Euclidean) inner product.Hence, the Gaˆteaux differential of f �N is given by

Df �N(� ; �4�) = D f �N(� ; �4�) = /
\ d� f �N(�), �8� \

/ + /
\ du f �N(�), � u \

/ l2

= /
\ d� f �N(�), �8� \

/ + /
\ du f �N(�) M−1

N , � u \
/ LN

- 39 - Chap. 2

(5.6)= /
\ d� f �N(�), �8� \

/ + /
\ V

−1
A,N(du f �N(�) M−1

N), � u \
/ 2 ,

where �4� = (�8� , � u) ∈∈ HN and �4� = (�8� , � u) = WA,N(�4�). Since by definition of ∇ f �N(�),

Df �N(� ; �4�) = /
\ ∇ f �N(�), �3� \

/ H for all �3� ∈∈ HN , the desired result follows from (5.6).

Note that for� ∈∈ HN , � = WA,N(�), du f �N(�)k ∈∈
r
× IRm and

(5.7)(∇ u f �N(�)[� k,i1]
. . . ∇ u f �N(�)[� k,i r]) =

1

∆
(du f �N(�)k,1

. . .du f �N(�)k,r) M−1

wherei j ∈∈ I , j ∈∈ r and∇ u f �N(�)[� k,i j
] is computed according according to (4.6e) or (4.11c).

Remark 5.2. At this point, we can draw one very important conclusion.For every � ∈∈ q, the

steepest descent direction, inHN , for the function f �N(⋅), at � , is giv en by

− (d� f �N(�), du f �N(�) M−1
N), and not by− (d� f �N(�), du f �N(�)) which is the steepest descent direc-

tion that one would obtain using the standardl2 inner product on
N
×

r
× IRm. The naive approach

of solving the discrete-time optimal control problemCPN using the latter steepest descent direc-

tions amounts to a change of metric that can result in severe ill-conditioning, as we illustrate in

Section 6.

We can now define optimality functions for the approximating problems, using the form of

the optimality function presented in (3.9b), for the original problem.For CPN , we define�
N : H N → IR, with � > 0 and the setHN defined in (4.15c), by

(5.8a)�
N() =. ¡

′ ∈∈ HN

min max

î ¢ ∈∈ qo

max f
∼ ¢N(, ′) − £ o,N() − ¤4£ c,N()+, ¢ ∈∈ qc+qo

max f
∼ ¢N(, ′) − £ c,N()+

where¥ c,N(�)+ =. max { 0,¥ c,N(�) } , and for � ∈∈ q,

(5.8b)f
∼ �N(� , � ′) =. f �N(�) + /

\ ∇ f �N(�), � ′ − � \
/ H + 1

2 ||� ′ − � ||2H .

If needed for a particular numerical algorithm (e.g.[64]),
�

N(�) =
�

N(�), where � = WA,N(�)

and

(5.9a)
�

N(�) =. ¦
′ ∈∈ HN

min 1
2 ||� ′ − � ||2HN

+ ΘN(� , � ′) ,

with

ΘN(� , � ′) = max{ � ∈∈ qo

max f �N(�) + /
\ (d� f �N(�), du f �N(�) M−1

N), � ′ − � \
/ HN

− ¥ o,N(�) − �§¥ c,N(�)+ ,

(5.9b)� ∈∈ qc+qo

max f �N(�) + /
\ (d� f �N(�), du f �N(�) M−1

N), � ′ − � \
/ HN

− ¥ c,N(�)+} ,

and the setHN is defined in (4.15d).

It should be obvious that these optimality functions are well defined because of the form of

the quadratic term and the fact that the minimum is taken over a set of finite dimension.The

- 40 - Chap. 2

following theorem confirms that (5.8a) satisfies the definition for an optimality function.The

proof is essentially the same as the proof in[58, Thms. 3.6,3.7].

Theorem 5.3. (i) ¨ N(⋅) is continuous;(ii) for every © ∈∈ HN , ¨ N(©) ≤ 0; (iii) if ©̂ ∈∈ HN is a

local minimizer forCPN then ¨ N(©̂) = 0.

Remark 5.4. It can also be shown that ¨ N(©̂) = 0 for ©̂ ∈∈ HN if and only if

d2 ΨN (©̂ , ©̂ ; © − ©̂) ≥ 0 for all © ∈∈ HN where

(5.9c)ΨN (© , © ′) =. max { ª o,N(©) − ª o,N(© ′) − «8ª c,N(© ′)+ , ª c,N(©) − ª c,N(© ′)+ } .

Proposition 5.5. The stationary points for problemCPN , that is, the points© ∈∈ HN such that

¨ N(©) = 0, do not depend on the control representation.

Proof. First, © ∈∈ HN is such thaẗ N(©) = 0 if and only if ΘN(© , © ′) = 0 for all © ′ ∈∈ HN . The

‘‘ if ’ ’ direction is obvious. For the ‘‘only if ’’ d irection,

¨ N(©) = min¬ˆ ′ ∈∈ HN
{ 1/2||© ′ − © ||2HN

+ ΘN(© , © ′) } = 0. This implies thatΘN(© , © ′) = 0 because

ΘN(© , © ′) is linear in © ′ whereas 1/2||© ′ − © ||2HN
is quadratic in © ′. Second, let © = (

3®
,

u) = © ′ − © . Then, for each̄ ∈∈ q,

(5.9d)/
\ (d° f ±N(©), du f ±N(©) M−1

N), © ′ − © \
/ HN

= /
\ d° f ±N(©),

3®
\
/ + /

\ du f ±N(©),

u \
/ l2 ,

sinceM N is non-singular. Hence,ΘN(© , © ′) does not depend on the control representation.Thus,

the points© such thaẗ N(©) = 0 do not depend on the control representation.

This proposition says that the numerical solution of the discretized problem is the same for either

control representation.The search directions and the control functions (V1
A,N)−1(u*) and

(V2
A,N)−1(u*) will, of course, be different.

2.5.2 Consistenc y of the Appr ox imations

To complete our demonstration of consistency of approximations we will show that the optimality

functions of the approximating problems satisfy condition (2.3).In fact, we will show that the

optimality of the approximating problems hypoconverge to the optimality function of the original

problem (i.e., − ¨ N
Epi

→ − ¨). Firstwe will present a simple algebraic condition which implies con-

vergence of the gradients.We will use the column vectorb
∼

∈∈ IRr given by

(5.10a)b
∼

= (b
∼

1
. . .b

∼
r)

T

with componentsb
∼

j defined in (4.10a), and also the valuesd j defined in (4.10b).

- 41 - Chap. 2

Theorem 5.6. For representationR1, suppose that Assumptions 3.1, 4.1’ and 4.3 hold.For

representationR2, suppose that Assumptions 3.1, 4.1’, and 4.6 hold.For N ∈∈ IN, let HN be

defined as in (4.13a), withLN = L 1
N or LN = L 2

N , and let f ²N : H N → IR, ³ ∈∈ q, be defined by

(4.16). LetM = M1 if LN = L 1
N and letM = M2 if LN = L 2

N . Let S be a bounded subset ofB.

If

(5.10b)M−1b
∼

= 11 ,

where 11 is a column vector ofr ones, then there exists á < ∞ and anN* < ∞ such that for allµ = (¶ , u) ∈∈ S ∩ HN andN ≥ N* ,

(5.10c)||∇ f ² (µ) − ∇ f ²N(µ)||H ≤
Ń

.

Proof. To simplify notation, we replacex·k by xk, and p² ,·k by p² k. Let S ⊂ B be bounded and

let µ = (¶ , u) ∈∈ S ∩ HN . Let u = VA,N(u) and µ = (¶ , u) whereVA,N = V 1
A,N for representation

R1 andVA,N = V 2
A,N for representationR2. For eachj ∈∈ r andk ∈∈ D , Fw j

(xk, uk) is giv en by

(5.3a). So,with Yk,i =. xk + ∆Σi−1
j=1 ai , j K j (xk, ¸ k) and ¸ k = ukG, there exists ´ 1 < ∞ such that

||Fw j
(xk, uk) − ∆b

∼
j hu(xk, uk, j)||

≤ ||Fw j
(xk, uk) − ∆

l ∈∈ I j

Σ bl hu(Yk,l , uk, j)|| + ||∆
l ∈∈ I j

Σ bl hu(Yk,l , uk, j) − ∆b
∼

j hu(xk, uk, j)||

≤ ∆2||
l ∈∈ I j

Σ
s

i=1
Σ bi hx(Yk,i , ¸ k,i)

i−1

p=1
Σ ∂

∂ ¸ l
K p (xk, ¸ k)|| + ∆

l ∈∈ I j

Σ bl ||hu(Yk,l , uk, j) − hu(xk, uk, j)||

(5.11a)≤ ´ 1∆2 ,

where we have used the Lipschitz continuity ofhu(⋅, ⋅) and the fact thatS bounded implies thatxk

and uk, j are bounded, which implies that for allj ∈∈ r , ||hu(xk, uk, j)|| and ||hx(xk, uk, j)|| are

bounded. Therefore,it follows from (5.5c) that

du f ²N(µ)k = [Fw1 (xk, uk)T p² k+1
. . .Fwr (xk, uk)T p² k+1]

(5.11b)= ∆[b
∼

1hT
u (xk, uk,1)p² k+1

. . .b
∼

r hT
u (xk, uk,r)p² k+1] + O(∆2) ,

where lim∆ → 0 |O(∆)/∆| < ∞. From equation (5.5a),VA,N(∇ u f ²N(µ)) = du f ²N(µ) M−1
N . There-

fore, from (5.11b) we obtain, for eachk ∈∈ D ,

(5.11c)VA,N(∇ u f ²N(µ))k =
∆
∆

(b
∼

1hu(xk, uk,1)
T p² k+1

. . .b
∼

r hu(xk, uk,r)
T p² k+1)M−1 +

O(∆2)

∆
.

- 42 - Chap. 2

At this point we must deal with our two control representations separately. For representa-

tion R1, u(⋅) ∈∈ U1
N is a Lipschitz continuous polynomial on each interval [tk, tk+1), with Lipschitz

constant¹ U given in (4.15a). Thus,for any i j , i l ∈∈ I , with j , l ∈∈ r and I defined in (4.4a),

(5.12)||uk, j − uk,l || = ||u[º k,i j
] − u[º k,i l]|| ≤ ¹ U ||∆(ci j

− ci l)|| ≤ ¹ U∆ ,

where Assumption 4.3 was used to justify the last inequality. Now, let

(5.13a)D =. [b
∼

1hT
u (xk, uk,1)p» k+1

. . .b
∼

r hT
u (xk, uk,r)p» k+1]M−1 ,

and letD j , j ∈∈ r , denote thej -th column ofD, so that, from (5.11c),

(5.13b)∇ u f »N(¼)[º k,i j
] = VA,N(∇ u f »N(¼))k, j = D j + O(∆) .

It follows from Assumptions 3.1fI(a) and 4.1’, equation (5.12) and the fact thatp» k+1 is bounded

for any ¼ ∈∈ S, that there exists ¹ 2, ¹ 3 < ∞, such that for any j ∈∈ r and i j ∈∈ I , and with M−1
i , j

denoting thei , j -th entry ofM−1,

||D j − hu(xk, uk, j)
T p» k+1

r

i=1
Σ b

∼
i M

−1
i , j || ≤ ||

r

i=1
Σ b

∼
i [hu(xk, uk,i) − hu(xk, uk, j)]T p» k+1M−1

i , j ||

(5.13c)≤
r

i=1
Σ ¹ 2||uk,i − uk, j || ||p» k+1M−1

i , j || ≤ ¹ 3∆ .

Also, if M−1b
∼

= 11 thenΣr
i=1 M−1

i , j b
∼

i = 1 since M is symmetric.Hence for any j ∈∈ r ,

(5.13d)||D j − hu(xk, uk, j)
T p» k+1|| ≤ ¹ 3∆ .

Therefore, from (5.13b),

(5.13e)∇ u f »N(¼)[º k,i j
] = hu(xk, uk, j)

T p» k+1 + O(∆) .

For representationR2, u(⋅) is not Lipschitz continuous on [tk, tk+1), so (5.12) does not hold.

However, since M = M2 is diagonal, equation (5.13e) is seen to be true directly from equation

(5.11c) if M−1b
∼

= 11.

Next, sinceS is bounded,(i) by Lemmas 4.10(i) and A.4 there exists ¹ 4 < ∞ such that

||xk − x½ (tk)|| ≤ ¹ 4∆ and || p» k+1 − p½ ,» (tk+1)|| ≤ ¹ 4∆ and(ii) p» k+1 andhu(xk, u[º k,i j
]) are bounded.

Thus, making use of Theorem 3.2(v) and equation (5.13e), the fact that bothx½ (⋅) and p» ,½ (⋅) are

Lipschitz continuous, andu[º k,i j
] = uk, j , we conclude that there exists ¹ 5 < ∞ such that

||∇ u f » (¼)[º k,i j
] − ∇ u f »N(¼)[º k,i j

]||

(5.14)= ||hu(x½ (º k,i j
), u[º k,i j

])T p» ,½ (º k,i j
) − hu(xk, u[º k,i j

])T p» k+1)|| + O(∆) ≤ ¹ 5∆ .

Next, for j ∈∈ r , i j ∈∈ I , k ∈∈ D , and t ∈∈ [0, 1] we have that

- 43 - Chap. 2

||∇ u f ¾ (¿)(t) − ∇ u f ¾N(¿)(t)|| ≤ ||∇ u f ¾ (¿)(t) − ∇ u f ¾ (¿)[À k,i j
]|| + ||∇ u f ¾ (¿)[À k,i j

] − ∇ u f ¾N(¿)[À k,i j
]||

(5.15a)+ ||∇ u f ¾N(¿)[À k,i j
] − ∇ u f ¾N(¿)(t)|| .

The second term in (5.15a) is orderO(∆) by (5.14). We will show that the first and third terms in

(5.15a) are also orderO(∆). First consider representationR1. It follows by inspection of (3.6b)

in Theorem 3.2(v) that ∇ u f ¾ (¿)(⋅) is Lipschitz continuous ont ∈∈ [tk, tk+1), k ∈∈ D , because

u ∈∈ L1
N is Lipschitz continuous on these intervals. Since∇ u f ¾N(¿)(⋅) ∈∈ LN , it is also Lipschitz

continuous on these intervals. Finally, by Assumption 4.3À k,i j
∈∈ [tk, tk+1] for all k ∈∈ D . Thus,

the first and third terms are of orderO(∆) for all t ∈∈ [0, 1]. For representationR2,

∇ u f ¾N(¿)(⋅) ∈∈ HN is constant ont ∈∈ [tk + d j−1, tk + d j), j ∈∈ r andk ∈∈ D . Sinceu ∈∈ L2
N is con-

stant on these intervals, it again follows by inspection of (3.6b) in Theorem 3.2(v) that ∇ u f ¾ (¿)(⋅)

is Lipschitz continuous on these intervals. Finally, by Assumption 4.6,À k,i j
∈∈ [tk + d j−1, tk + d j],

for all k ∈∈ D and j ∈∈ r . Since d0 = 0 and dr = ∆, the first and third terms are of orderO(∆) for

all t ∈∈ [0, 1]. We conclude that there exist Á 6 < ∞ such that

(5.15b)||∇ u f ¾ (¿)(t) − ∇ u f ¾N(¿)(t)|| ≤ Á 6∆ , t ∈∈ [0, 1]

which implies that

(5.15c)||∇ u f ¾ (¿) − ∇ u f ¾N(¿)||2 ≤ Á 6∆ .

Next we consider the gradient with respect to initial conditionsÂ . From Theorem 3.2(v) and

(5.5b), ||∇ Ã f ¾ (¿) − dÃ f ¾N(¿)|| ≤ ||∇ Ã Ä ¾ (Â , xÅ (1)) − ∇ Ã Ä ¾ (Â , xN)|| + ||p¾ ,Å (0) − p¾0||. Thus, sinceS is

bounded, it follows from Assumption 3.1(b) and Lemmas 4.10 and A.4 that there exists Á 7 < ∞
such that

(5.16)||∇ Ã f ¾ (¿) − dÃ f ¾N(¿)|| ≤ Á 7(||xÅ (1) − xN || + ||p¾ ,Å (0) − p¾0||) ≤ Á 7∆ .

Combining (5.15c) and (5.16), we see that there exists Á < ∞ such that for any ¿ N ∈∈ S ∩ HN ,

(5.17)||∇ f ¾ (¿ N) − ∇ f ¾N(¿ N)||H ≤
Á
N

.

The following proposition states conditions for (5.10b) to hold.

- 44 - Chap. 2

Proposition 5.7.

(a) SupposeM = M1. Then (5.10b) holds if and only if the coefficients of the

Butcher array satisfy

(5.18)
s

j=1
Σ b j c

l−1
j =

1

l
, l = 1, . . . ,r .

(b) SupposeM = M2. Then (5.10b) holds if and only if for allj ∈∈ r , b
∼

j > 0.

Proof. (a) For M = M1, it follows from (4.9b) thatM−1b
∼

= 11 if and only if

(5.19a)T−THilb(s)−1T−1b
∼

= 11 .

Now, it is easy to see that

(5.19b)T−1b
∼

=

Σr
j=1 b

∼
j

Σr
j=1 b

∼
j ci j...

Σr
j=1 b

∼
j c

r−1
i j

=

Σs
j=1 b j

Σs
j=1 b j c j...

Σs
j=1 b j cr−1

j

=

1

1/2
...

1/r

,

where the last equality holds if and only if (5.18) holds.Note thatT−1b
∼

is then the first column

of Hilb(r). Consequently,

(5.19d)Hilb(r)−1T−1b
∼

= Hilb(r)−1

1

1/2
...

1/r

=

1

0
...
0

,

which leads us to conclude that

(5.19e)M−1b
∼

= T −T

1

0
...
0

=

1

1

1

ci1

ci2

ci r

. . .

. . .
. . .

cr−1
i1

cr−1
i2

cr−1
i r

1

0
...
0

=

1

1
...
1

.

(b) For M = M2, giv en by (4.12b), M−1 is non-singular if and only ifb
∼

j ≠ 0. Also, (5.10b)

holds if and only ifM11 = b
∼

. Clearly then, ifb
∼

j ≠ 0, (5.10b) holds because

(5.20)M11 =

b
∼

1
. . .

b
∼

r

1
...
1

= b
∼

.

- 45 - Chap. 2

Remark 5.8. The conditions (5.18) on the coefficients of the Butcher array for representation

R1 are necessary conditions for the RK methods to ber -th order accurate[61,62]. Thecondition

with l = 1 in (5.18) is the same as the second part of Assumption 4.1’.

Theorem 5.9. For representationR1, suppose that Assumptions 3.1, 4.1’ and 4.3 and equation

(5.18) hold and letd = 2. For representationR2, suppose that Assumptions 3.1, 4.1’, and 4.6

hold and letd be the least common denominator for the elementsb j , j ∈∈ s, of the Butcher array.

Let N =. { dl } ∞
l=1 and suppose that{ Æ N } N ∈∈ K , K ⊂ N, is such thatÆ N ∈∈ HN for all N ∈∈ K

and Æ N → Æ asN → ∞. Then Ç N(Æ N) →K Ç (Æ) as N → ∞.

Proof. Let Ψ
∼

: H × H → IR be defined by

(5.21a)Ψ
∼

(Æ , Æ ′) =. max

î È ∈∈ qo

max f
∼ È (Æ , Æ ′) − É o(Æ) − Ê8É c(Æ)+ , È ∈∈ qc+qo

max f
∼ È (Æ , Æ ′) − É c(Æ)+

,

andΨ
∼

N : HN × HN → IR be defined by

(5.21b)Ψ
∼

N(Ë , Ë ′) =. max

î Ì ∈∈ qo

max f
∼ ÌN(Ë , Ë ′) − Í o,N(Ë) − ÎÏÍ c,N(Ë)+ , Ì ∈∈ qc+qo

max f
∼ ÌN(Ë , Ë ′) − Í c,N(Ë)

,

so that, Ç (Æ) = minÐ ′ ∈∈ H Ψ
∼

(Æ , Æ ′), and Ç N(Æ) = minÐ ′ ∈∈ HN
Ψ
∼

N(Æ , Æ ′). Now, suppose that

{ Æ N } N ∈∈ K is a sequence such that, for allN, Æ N ∈∈ HN and Æ N →K Æ . From the proof of The-

orem 4.12,Æ ∈∈ H. Let Æ̂ ∈∈ H be such thatÇ (Æ) = Ψ
∼

(Æ , Æ̂), and let{ Æ ′N } N ∈∈ K be any sequence

such that, for allN, Æ ′N ∈∈ HN and Æ ′N →K Æ̂ . Then,

Ñ
N(Ë N) ≤ Ψ

∼
N(Ë N , Ë ′N) ≤ Ψ

∼
(Ë N , Ë ′N) +

max

î Ì ∈∈ qo

max { f
∼ ÌN(Ë N , Ë ′N) − f

∼ Ì (Ë N , Ë ′N) } − [Í o,N(Ë N) − Í o(Ë N)] − [Î4Í c,N(Ë N)+ − Î4Í c(Ë N)+] ,

(5.22)Ì ∈∈ qc+qo

max { f
∼ ÌN(Ë N , Ë ′N) − f

∼ Ì (Ë N , Ë ′N) } − [Í c,N(Ë N) − Í c(Ë N)]

It follows from Theorem 4.12, Theorem 5.6, Proposition 5.7 and the fact that { Æ N } N ∈∈ K is a

bounded set, that each part of the max term on the right hand side of (5.22) converges to zero as

N → ∞. The quantityΨ
∼

(Æ N , Æ ′N) converges to Ç (Æ) since Æ N →K Æ , Æ ′N →K Æ̂ andΨ
∼

(⋅, ⋅) is

continuous. Thus, taking limits of both sides of equation (5.22), we obtain that

lim Ç N(Æ N) ≤ Ç (Æ) (this proves that (2.3) holds for the optimality functions of the approximating

problems). Now, for all N ∈∈ K , let Æ̂ N ∈∈ HN be such thatÇ N(Æ N) = Ψ
∼

N(Æ N , Æ̂ N). Then,

Ç (Æ N) ≤ Ψ
∼

(Æ N , Æ̂ N) and proceeding in a similar fashion as (5.22) and taking limits, we see that

Ç (Æ) ≤ lim Ç N(Æ N). Hence, together with the previous result, we can conclude that

- 46 - Chap. 2

Ò
N(Ó N) →K Ò

(Ó) as N → ∞.

Since the union of the spacesHN is dense inH∞,2, and Theorem 5.9 holds, it follows that

the hypographs of the optimality functions
Ò

N(⋅) converge to the hypograph of the optimality

function
Ò
(⋅), in the Kuratowski sense,i.e., − Ò N(⋅)

Epi

→ − Ò (⋅).

The following corollary is a direct result of Theorem 4.12 (epiconvergence) and Theorem

5.9:

Corollary 5.10. (Consistency) For representationR1, suppose that Assumptions 3.1, 4.1’, 4.3

and 4.11 and equation (5.18) hold.For representationR2, suppose that Assumptions 3.1, 4.1’,

4.6 and 4.11 hold.Let N = { dl } ∞
l=1 whered = 2 for representationR1 andd is the least com-

mon denominator of theb
∼

j , j ∈∈ s, for representationR2. Then the approximating pairs

(CPN ,
Ò

N), N ∈∈ N, are consistent approximations to the pair (CP,
Ò

) .

We conclude this section with a conjecture concerning the constraints on ||ukT j ||∞ used to

defineU1
N in (4.15a). Recall from Remark 4.9 that these constraints impose a Lipschitz continu-

ity constraint on the individual polynomial pieces ofu ∈∈ U1
N = V −1

A,N(U1
N) that is needed to

ensure accurate RK integration for controls defined by representationR1. Clearly, the addition of

these constraints, which do not appear in the original problemCP, is a nuisance. Conjecture5.11

proposes conditions under which these constraints are not needed to define consistent approximat-

ing problems (CPN ,
Ò

N) using control representationR1. Assumption 4.6 (needed for control

representationR2) is required in place of Assumption 4.3.

Conjecture 5.11. Suppose that the approximating problemsCPN are defined according (4.17a)

with HN =. IR × V−1
A,N(U1

N) where

(5.23)U1
N =. { u ∈∈ L1

N | u j
k ∈∈ U \/ j ∈∈ r , k ∈∈ Ô } .

Furthermore, assume that Assumption 3.1, 4.1’, 4.6 and 4.11 and (5.18) hold.Let N = { 2 l } ∞
l=1.

Then the approximating pairs (CPN ,
Ò

N), N ∈∈ N, are consistent approximations to the pair

(CP,
Ò

) .

The basis for this conjecture is the fact that, according to Proposition 5.5, the control samples of

the approximating problem solutions do not depend on the control representation.Since we have

shown that the approximating problems, along with their optimality functions, (CPN ,
Ò

N), defined

with control representationR2 are consistent approximations to (CPN ,
Ò

N), we know that the

convergence results of Theorem 2.2 hold.In particular, we know that strict local minimizers of

CPN converge to strict local minimizers ofCP. But this must also be true under representation

R1 with CPN defined according to Conjecture 5.11 since the control samples for the sequence of

- 47 - Chap. 2

solutions generated by solving these approximating problems is the same as for the approximat-

ing problems defined using representationR2. Thus, if a sequence{ uN* } of control samples

corresponding to the solutions for the problems{ CPN } i s such that (V2
A,N)−1(uN

*) →K u* , then

it is also true that (V1
A,N)−1(uN

*) →K u* . For eachN, let uN
* = (V1

A,N)−1(uN
*). Then,because

{ uN* } k ∈∈ K is a convergent sequence, there exists Õ U < ∞ such that ||uN(Ö 1) − uN(Ö 2)|| ≤ Õ U for

all Ö 1, Ö 2 ∈∈ [tk, tk+1], k ∈∈ D . Hence, Lemma 4.10(i) holds which implies that Theorem 4.12 and

Corollary 5.10 hold.Note that, even if this conjecture is not true, the main convergence results

provided by the theory of consistent approximations do hold for the reason just presented.

2.6 COORDINATE TRANSFORMATIONS AND NUMERICAL RESULTS

The problemsCPN can be solved using existing optimization methods (e.g., [64,65]).

These methods, however, are defined on Euclidean space and existing code would have to be

modified for use on the coefficient spacesL i
N , i = 1, 2. To avoid this difficulty, we will now

define a change of coordinates in coefficient space that implicitly defines an orthonormal basis for

the subspaceL i
N , and hence turns the coefficient space into a Euclidean space.

Let LN = L 1
N or L2

N and, correspondingly, VA,N = V 1
A,N or V2

A,N . Recall from (5.5a) that,

for × = (Ø , u) ∈∈ HN and Ù ∈∈ q, ∇ u f ÚN(×) = V −1
A,N(du f ÚN(×) M−1

N), where × = (Ø , u) = WA,N(×)

anddu f ÚN(×), defined in (5.5c), is the gradient off ÚN(⋅) with respect to the standardl2 inner prod-

uct on
N
×

r
× IRm. The gradient off ÚN(⋅) with respect to the inner product onLN is given by

∇ u f ÚN(×) = VA,N(∇ u f ÚN(×)) = du f ÚN(×) M−1
N , and satisfies

(6.1)/
\ ∇ u f ÚN(×), Û uN

\
/ 2 = /

\ ∇ u f ÚN(×), Û u \
/ LN

= /
\ du f ÚN(×), Û u \

/ l2 ,

for any Û u ∈∈ HN and Û u = VA,N(Û u). Introduce a new coefficient space,L
∼

N =
N
×

r
× IRm,

endowed with the standardl2 inner product and norm, and a transformationQ : LN → L
∼

N

defined by

(6.2a)u∼ = Q(u) = u M1/2
N ,

whereM N is defined in (5.4).Let × ∼ = (Ø , u∼) and for eachÙ ∈∈ q, let f
∼ ÚN : IRn × L

∼
N → IR be

defined by

(6.2b)f
∼ ÚN(×∼) =. f ÚN((Ø , u∼ M−1/2

N)) .

Finally, let × = (Ø ,Q−1(u∼)). Then,by the chain rule,

- 48 - Chap. 2

(6.2c)∇ u∼ f
∼ Ü

N(Ý ∼) = Q−1(∇ u f
Ü
N(Ý)) = du f

Ü
N(Ý) M−1/2

N .

Thus, /
\ ∇ u∼ f

∼ Ü
N(Ý ∼), Þ u∼ \

/ l2 = /
\ ∇ u f

Ü
N(Ý), Þ u \

/ LN
= /

\ ∇ u f
Ü
N(Ý), Þ u \

/ 2, whereÞ u∼ = Q(Þ u).

Remark 6.1. Implicitly, the transformationQ creates an orthonormal basis forLN because

under this transformation the inner-product and norm onLN are equal to thel2 inner-product and

norm on the coefficient space.With this transformation, the approximating problemsCPN can be

solved using standard nonlinear programming methods without introducing ill-conditioning.It is

important to note, however, that control constraints are also transformed.Thus, the constraint

u ∈∈ UN becomesu∼ M−1/2
N ∈∈ UN . For representationR1, since M−1/2

N is not diagonal (except if

r = 1), this means that the transformed control constraints will, for eachk ∈∈ D , inv olve linear

combinations of the control samplesu∼ k, j , j ∈∈ r .

We will now present a numerical example that shows, in particular, that this transformation

can make a substantial difference in the performance of an algorithm.

Example. Consider the following linear-quadratic problem taken from[42]:

(6.3a)
u ∈∈ U
min f (u) , f (u) =. xu

2(1) ,

wherex(t) = (x1(t), x2(t))T and

(6.3b)ẋ =

0. 5x1 + u

0. 625x2
1 + 0. 5x1u + 0. 5u2

, x(0) =

1

0

, t ∈∈ [0, 1] .

The solution to this problem is given by

(6.4)u* (t) = − (tanh(1− t) + 0. 5) cosh(1− t) / cosh(1) , t ∈∈ [0, 1] ,

with optimal costf (u*) = e2 sinh(2) / (1+ e2)2 ≈ 0. 380797.

The approximating cost functions arefN(u) = (0 1) xu
N where {xu

k } N
k=0 is the RK solution

for a given control u ∈∈ LN . We discretized the dynamics using the following common RK meth-

ods of order 3 and 4 respectively:

- 49 - Chap. 2

0

A3 = 1
2

1
2

1 −1 2

1
6

2
3

1
6

0
1
2

1
2

A4 = 1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

The matricesM N used to define the transformationQ in (6.2a) are given by (4.9d) and (4.12c)

with

(6.5)M1 =
1

30

4

2

−1

2

16

2

−1

2

4

, M2 =
1

6

1

0

0

0

4

0

0

0

1

.

The matricesM1 and M2 for methodA3 are the same as for methodA4 since c2 = c3 = 1/2

impliesr = 3 and b
∼

2 = 2 / 3.

We solved the approximating problems using steepest descent with the step-size determined

by an Armijo rule augmented with a quadratic fit based on the value of fN(⋅) at the last two evalu-

ations in the line search.The stopping criterion was ||du fN ||2 ≤ (3. 1e− 4) /N† and the initial

guess was u(t) = 0, t ∈∈ [0, 1]. Table 6.1 shows the number of iterations required to solve the

approximating problems for different discretization levels N with and without the transformation

(6.2a,b). We see that solving the discretized problems without the transformation requires about

five times the number of iterations required for solving the problem with the transformation.The

situation can be even worse for other RK methods.The choice of representationR1 versus repre-

sentationR2 and the RK method had no effect on the number of iterations required.

Number of Iterations

N M = M i , i = 1, 2 M =
1

N
I

10 4 19

20 4 19

40 5 23

80 5 24

Table 6.1:Conditioning Effect of the TransformationQ on Approximating Problems (RK3).

We will now show why it is advantageous to treat the repeated control samples for method

A4 as a single sample (cf. Remark 4.9).Let { uN* } N ∈∈ N, N ⊂ IN, be solutions of CPN and

† Higher precision was difficult to achieve when theQ transformation was not used.

- 50 - Chap. 2

supposeuN* → u* whereu* is a solution ofCP. In [57, Thm. 3.1], Hager establishes, for sym-

metric RK methods[66,67], a tight upper bound on the errorEu
N =. ||VA,N(u*) − VA,N(uN

*)||l∞ , of

second order in∆ = 1 / N for smooth, unconstrained problems.Note thatVA,N(u*)k, j = u* (ß k, j),

k ∈∈ D and j ∈∈ r becauseu* (⋅) is continuous (in fact, smooth) for smooth problems[28,36].

Hager used the problem given in (6.3) to demonstrate the tightness of this bound.For the particu-

lar RK method given by the Butcher arrayA2, we can state the following improved result (which,

according to Proposition 5.5, does not depend on the control representation):

Proposition 6.2. Let CP =. minu ∈∈ U f (xu(1)), u unconstrained. Supposethe approximating

problemsCPN are produced by discretizingCP with the fourth order RK method with Butcher

arrayA4. Further, suppose that ||xu* (1) − xu* N,N || = O(∆4), that is, at the RK integration is fourth

order accurate atu* . Let { uN
* } N ∈∈ N, N ⊂ IN, be solutions of CPN and supposeuN* → u*

whereu* is a solution ofCP. ThenEu
N =. ||VA,N(u*) − VA,N(uN*)||l∞ = O(∆3).

Sketch of Proof. In [42], it is shown, using a reasonable non-singularity assumption on the Hes-

sians of fN(⋅), that the accuracy of the solutions of the approximating problems is determined by

N times the size of the discrete-time derivative (using the standardl2 inner-product) of the

approximating problem atu* =. VA,N(u*), that is,Eu
N ∼ N||du fN(u*)||. This,in turn, is a function of

the accuracy of the state and adjoint approximations.For the RK method under consideration,

Hager shows that, fork ∈∈ D , the variablesu* k,1 = u* (tk) and u* k,3 = u* (tk + ∆) are third order

approximations tou* (tk) and u* (tk + ∆), respectively. Thus, we need only show that

u* k,2 = u* (tK + ∆ / 2) is a third order approximation tou* (tk + ∆ / 2).

Let Yk,2 = xk + ∆
2 h(xk, uk,1) and Yk,3 = xk + ∆

2 h(Yk,2, uk,2) represent intermediate values

used by the RK method at thek-th time-step. In Hager’s notation, Yk,2 = y(1,k) and

Yk,3 = y(2,k). Hagerintroduces a clever transformation, specific to symmetric RK methods, for

the adjoint variables so that they can be viewed as being calculated with the same RK method

used to compute the state variables, but run backwards in time. The intermediate adjoint vari-

ables of interest here are denoted byq(2,k) and q(1,k). With this transformation, the discrete-

time derivative for the approximating problems have the same form as the continuous-time gradi-

ent for the original problem. Since c2 = c3 = 1 / 2,

du fN(u*)k,2 = 2
3 ∆[1

2 hu(Yk,2, u* k,2)
T q(1,k) + 1

2 hu(Yk,3, u* k,2)
T q(2,k)]. Further, since

2 ∆
3 hu(xu* (tk + ∆

2), u* (tk + ∆
2))T pu* (tk + ∆

2) = 0, ||du fN(u*)k,2|| is bounded by2
3 ∆ times the maxi-

mum of ||(Yk,2 + Yk,3) / 2 − xu* (tk + ∆
2)|| and ||(q(2,k) + q(1,k)) / 2 − pu* (tk + ∆

2)||. Let

w(k) =. Yk,2 + Yk,3

2
= xk +

∆
4

[h(xk, u* k,1) + h(xk +
∆
2

h(xk, u* k,1), u* k,2)]

- 51 - Chap. 2

(6.6)= xk +
∆′
2

[h(xk, u* k,1) + h(xk + ∆′h(xk, u* k,1), u* k,2)] ,

where∆′ = ∆ / 2. Thus, w(k) is produced by the improved Euler rule applied toxk. Since the

local truncation error for the improved Euler rule is orderO(∆3) and xk is order O(∆4),

||w(k) − xu* (tk + ∆
2) || is order O(∆3). In the same way, it can be shown that

||q(2,k) + q(1,k)) / 2 − pu* (tk + ∆
2)|| is O(∆3). Thus,we can conclude that ||du fN(u*)k,2|| = O(∆4)

for all k ∈∈ D . This implies that the solutions of the approximating problems satisfy

||u* N k, j − u* (à k,i j
)|| = O(∆3) for all k ∈∈ D and j ∈∈ r .

Table 6.2 summarizes our numerical results using the RK method with Butcher arrayA4.

The first column gives the discretization level. Columns2 and 3 show that doubling the dis-

cretization results in an eight-fold reduction in the control error. Thus, as predicted by Proposi-

tion 6.2,Eu
N is O(∆3). Thenext two columns, agreeing with Hager’s observations that the opti-

mal trajectories of the approximating problem converge to those of the original problem with the

same order as the order of the symmetric RK method, show that E f
N =. | f (u*) − fN(uN*)| is order

O(∆4). Thenumbers in columns 2 and 4 were obtained by solving the discretized problems to

full precision. Finally, we include in the last two columns the number of iterations required to

solve the approximate problem with and without the transformationQ. The stopping criterion

was the same as used for Table 6.1.As with the previous method, the effect of theQ transforma-

tion is quite significant.The solution of the untransformed problem requires about five times the

number of iterations required to solve the transformed problem.

Accuracy of Solutions Numberof Iterations

N Eu
N Eu

N / Eu
2N E f

N E f
N / E f

2N M = Mi , i = 1, 2 M =
1

N
I

10 1.48e-4 7.91 2.86e-7 16.22 4 21

20 1.87e-5 7.99 1.76e-8 16.13 5 21

40 2.34e-6 7.62 1.09e-9 16.07 5 23

80 3.07e-7 6.80e-11 5 23

Table 6.2:Order of Convergence; Conditioning Effect of the TransformationQ (RK4).

The last table shows the accuracy of the gradients for the approximating problems produced

with the second RK method (Butcher arrayA4) evaluated at the controlu(t) = − 1 + 2t. The first

column shows the discretization level N. The second and third columns confirm that the gradi-

ents, ∇ fN(u) = du fN(u)M−1
N , for the approximating problems converge to the gradients of the

original problem. Note that, based on the proof of Theorem 5.6, it is enough to show that the

- 52 - Chap. 2

gradients converge at the pointsá k,i j
, k ∈∈ D , j ∈∈ r , and i j ∈∈ I . The fourth column of Table 6.3

shows that the gradients that result if one uses the standardl2 inner product on
N
×

r
× IRm do not

converge.

M = M1 M = M2 M =
1

N
I

N ||VA,N(∇ f (u)) − ∇ fN(u)||l∞ ||VA,N(∇ f (u)) − ∇ fN(u)||l∞ ||VA,N(∇ f (u)) − Ndu fN(u)||l∞

10 1.67e-3 6.46e-4 1.48

20 3.77e-4 8.31e-5 1.48

40 9.94e-5 1.05e-5 1.48

80 2.55e-5 1.33e-6 1.48

Table 6.3:Convergence of Gradients.

2.7 APPROXIMATING PROBLEMS BASED ON SPLINES

In this section, we use splines as the finite dimensional basis elements in the construction of

approximating problems for optimal control problems with endpoint inequality constraints and

box-type control constraints.One of the early references that used splines for the solution opti-

mal control problems is[35]. We show that the resulting approximating problems, along with

their optimality functions, are consistent approximations to the original problem with its optimal-

ity function assuming that Conjecture 5.11 is true.In the process, we will develop some results

for splines that are interesting for their own sake. For clarity, the results below are stated only in

terms of control variablesu rather than the initial state/control pairâ = (ã , u). Thetreatment of

variable initial conditions is unaffected by the use of splines.

We will construct our finite dimensional control spaces using spline basis functions (B-

splines). Thus,for r ∈∈ IN, r ≥ 1, let

(7.1a)L(r)
N =. { u ∈∈ Lm

∞,2[0, 1] | u(t) =
N+r−1

k=1
Σ ä k å k(t) , t ∈∈ [0, 1] } ,

where ä k ∈∈ IRm, å k : [0, 1] → IR are the basis function withå k(t) = Bk,r ,tN
(t), defined below, and

r is the order (one more than the degree) of the polynomials that make up the spline pieces.For

an excellent presentation of spline theory, we refer the interested reader to[63]. ThesubscripttN

in Bk,r ,tN
(t) is the knot sequence upon which the B-splines are defined.We will not consider knot

sequences with repeated interior knots although many of our results hold in that case also.

- 53 - Chap. 2

Rather, we will consider two knot sequences which are constructed by adding endpoint knots to

the set of breakpoints{ tk } N
k=0 (note that, unlike in [63], our breakpoint sequence begins with the

index k = 0 rather thank = 1.). Thetwo knot sequences are

Uniform knot sequence. The knot sequence is

(7.1b)tN =. { k / N } N+r−1
k = − r+1 .

General knot sequence. The knot sequence is

(7.1c)tN =. { tk } N+r−1
k = − r+1

where {tk } i s a sequence of not necessarily uniformly spaced breakpoints which satisfy

(7.1d)t−r+1 = . . . = t 0 < t1 < . . . < tN−1 < tN = . . . = t N+r−1 .

The uniform knot sequence can only be used for uniformly spaced breakpoints.The purpose of

its introduction is solely to make some results cleaner and easier to see.The spacing of the break-

points, {tk } N
k=0, for the general knot sequence may or may not be uniform.In our notation, the

knot sequences begin with index k = − r + 1 (rather thank = 1 as in [63]).

With these knot sequences, the B-splines constitute a basis for theN + r − 1 dimensional

space ofr −2 times continuously differentiable splines of orderr with breakpoints at times

{ tk } N
k=0. Since splines are just piecewise polynomials between breakpoints with continuity and

smoothness constraints at the breakpoints,L(r)
N ⊂ L1

N whereL1
N is defined in Section 4 for repre-

sentationR1 with r -th order polynomial pieces.The control samples,u[æ k, j], k = 0, . . . ,N − 1,

j ∈∈ r , used by the RK integration method given in (4.3a,b) are related to the spline coefficients by

u[æ k, j] = ΣN+r−1
k=1 ç k è k(æ k, j).

We will use B-splines normalized so thatΣN+r−1
k=1 Bk,r ,tN

(t) = 1 for all t ∈∈ [0, 1]. For a

given knot sequence, these B-splines can be written (see[63]) in terms of the following recursion

on the spline orderr :

(7.2a)Bk,r+1,tN
(t) =

t − tk−r−1

tk−1 − tk−r−1
Bk−1,r ,tN

(t) +
tk − t

tk − tk−r
Bk,r ,tN

(t) , r ≥ 1 ,

(7.2b)Bk,1,tN
(t) =

î

1 , tk−1 ≤ t < tk

0 , otherwise
.

If tN is the uniform knot sequence, the domain of the B-splines extends outside of the range

t ∈∈ [0, 1]. This is for the purpose of construction only; the functionsu(t), given by (7.1a), are

defined only ont ∈∈ [0, 1]. An important feature of B-splines is that the support of each basis

function, è k(t), is limited to [tk−r , tk]. This is important for efficient computation ofu(t) from its

- 54 - Chap. 2

spline coefficients and of gradients for the cost and constraint functions.

As an example of B-splines defined on a uniform knot sequence, we express the basis func-

tions for cubic splines (r = 4) explicitly (compare with[35] where the B-spline normalization is

different):

(7.2c)Bk,4,tN
(t) =

1

6∆3

î

(t − tk−4)3 ,

∆3 + 3∆2(t − tk−3) + 3∆(t − tk−3)2 − 3(t − tk−3)3 ,

4∆3 − 6∆(t − tk−2)2 + 3(t − tk−2)3 ,

∆3 − 3∆2(t − tk−1) + 3∆(t − tk−1)2 − (t − tk−1)3 ,

tk−4 ≤ t ≤ tk−3

tk−3 ≤ t ≤ tk−2

tk−2 ≤ t ≤ tk−1

tk−1 ≤ t ≤ tk

,

where ∆ = 1 / N. As another example, we plot the B-spline functions for a quadratic spline

defined on the general knot sequence{ 0, 0, 0, 0. 1, 0. 25, 0. 3, 0. 4, 0. 4, 0. 4 }in Figure 7.1.

We now formulate the approximating problems using splines.The control constraint sets

for the approximating problems are defined as,

(7.3)U(r)
N =. { u ∈∈ L(r)

N | é k ∈∈ U , k = 1, . . . ,N + r − 1 }

where, for this section, we assume thatU , used to defineU in (3.3a), is of the form

000 0.1 0.25 0.3 0.40.40.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Parabolic spline basis functions with non−uniform breakpoint sequence.

Fig. 7.1: A plot of the six B-spline functions used to construct
quadratic splines defined on this general knot sequence.

- 55 - Chap. 2

(7.3b)U =. { v = [v1, . . . ,vm]T ∈∈ IRm | − ∞ < ai ≤ vi ≤ bi < ∞ , i = 1, . . . ,m} .

Thus, the spline coefficients for each component of the control have constant bounds.

The approximating problems are thus:

(7.3c)
u ∈∈ U(r)

N

min { ê o,N(u) | ê c,N(u) ≤ 0 } ,CPN

with ê o,N(u) and ê c,N(u) as defined in (4.17).We will keep the definition of the optimality func-

tions the same as given in Section 5. Note that the decision parameters for these problems tran-

scribed into coefficient space are the coefficients ë k, k = 1, . . . ,N + r − 1, rather than theNr con-

trol samplesu[ì k, j], k = 0, . . . ,N − 1, j = 1, . . . ,r for the approximating problems defined in

Section 4.Thus, the number of decision parameters needed for splines is substantially less than

the number needed for the same order general piecewise polynomials.This is the motivation for

using splines.

The next three results state properties of the spline subspaces that are needed to prove epi-

convergence of the approximating problems to the original problem.Proposition 7.1 and Corol-

lary 7.2 apply only to uniform knot sequences.Corollary 7.2 is a non-recursive version of the

subdivision result given in [68, Thm 3.1]; the method of proof is completely different. Asimilar

result for general knots sequences, expressed in terms of a recursion formula, can be found

in [69,70].

Proposition 7.1. (Nesting of Basis Functions) Given an integer í ≥ 1, let

tN = { k / N } k=N+î −1
k = −î +1 andtN ′ = { k / 2N } k=2N+î −1

k = −î +1 . Then,

(7.4)Bk,î ,tN
(t) =

1

2î −1

î +1

i=1
Σ ï î ,i B2k−î +i−1,î ,tN ′(t) , k = 1, . . . ,N + í − 1 ,

whereï î ,i is thei-th coefficient of the polynomial (t + 1)î .

Proof. We prove (7.4) by induction oní . It is clear from (7.2b) that (7.4) holds forí = 1.

Now we will show that if (7.4) holds forí = r , then it holds forí = r + 1. From(7.2a),

(7.5a)Bk,r+1,tN
(t) =

t − tk−r−1

r∆
Bk−1,r ,tN

(t) +
tk − t

r∆
Bk,r ,tN

(t) .

Substituting (7.4) into this expression while letting∆′ = ∆ / 2 and tk = t ′2k gives us

Bk,r+1,tN
(t) =

t − t ′2(k−r−1)

2r∆′
1

2r−1

r+1

i=1
Σ ï r ,i B2(k−1)−r+i−1,r ,tN ′(t) +

t ′2k − t

2r∆′
1

2r−1

r+1

i=1
Σ ï r ,i B2k−r+i−1,r ,tN ′(t)

- 56 - Chap. 2

=
1

2r

î

ð
r ,1

t − t ′2(k−r−1)

r∆′
B2(k−1)−r ,r ,tN ′(t) + ð

r ,2
t − t ′2(k−r−1)

r∆′
B2k−1−r ,r ,tN ′(t)

+
r

j=2
Σ

ð

r , j+1
t − t ′2(k−r−1)

r∆′
+ ð

r , j−1
t ′2k − t

r∆′

B2(k−1)−r+ j ,r ,tN ′(t)

+ ð
r ,r

t ′2k − t

r∆′
B2k−1,r ,tN ′(t) + ð

r ,r+1
t ′2k − t

r∆′
B2k,r ,tN ′(t)

=
1

2r

î

ð
r ,1

t − t ′2(k−r−1)

r∆′
B2(k−1)−r + ð

r ,1
t ′2k−r−1 − t

r∆′
B2k−r−1 + (ð r ,1 + ð

r ,2)
t − t ′2(k−r)−1

r∆′
B2k−r−1

+
r

j=2
Σ

(ð r , j−1 + ð

r , j)
t ′2(k−1)−r+ j − t

r∆′
+ (ð r , j + ð

r , j+1)
t − t ′2(k−r−1)+ j

r∆′

B2(k−1)−r+ j

+ (ð r ,r + ð
r ,r+1)

t ′2k−1 − t

r∆′
B2k−1 + ð

r ,r+1
t − t ′2k−r−1

r∆′
B2k−1 + ð

r ,r+1
t ′2k − t

r∆′
B2k

where we have abbreviatedBk,r ,tN ′(t) with Bk and we have used the following facts:

(i) sincer ð r ,1 − ð
r ,2 = 0,

ð
r ,2(t − t ′2(k−r−1)) = (r ð r ,1 − ð

r ,2)∆′ + ð
r ,2(t − t ′2(k−r−1))

= ð
r ,1(t ′2k−r−1 − t + t − t ′2(k−r)−1) + ð

r ,2(t − t ′2(k−r−1) − ∆′)

(7.5b)= ð
r ,1(t ′2k−r−1 − t) + (ð r ,1 + ð

r ,2)(t − t ′2(k−r)−1) ,

(ii) sinceð r ,r − r ð r ,r+1 = 0,

ð
r ,r (t ′2k − t) = ð

r ,r (t ′2k − t) − (ð r ,r − r ð r ,r+1)∆′

= ð
r ,r (t ′2k − t − ∆′) + ð

r ,r+1(t ′2k−1 − t + t − t ′2k−r−1)

(7.5c)= (ð r ,r + ð
r ,r+1)(t ′2k−1 − t) + ð

r ,r+1(t − t ′2k−r−1) ,

(iii) and sinceð r , j−1(r + 2 − j) − r ð r , j + j ð r , j+1 = 0, j = 2, . . . ,r , we see that

r

j=2
Σ ð

r , j−1
t ′2k − t

r∆′
+ ð

r , j+1
t − t ′2(k−r−1)

r∆′

=
r

j=2
Σ ð

r , j−1
t ′2k − t

r∆′
+ ð

r , j+1
t − t ′2(k−r−1)

r∆′
−

1

r
(ð r , j−1(r + 2 − j) − r ð r , j + j ð r , j+1)

- 57 - Chap. 2

=
r

j=2
Σ ñ r , j−1

t ′2k − t

r∆′
+ ñ r , j+1

t − t ′2(k−r−1)

r∆′
− ñ r , j−1

r + 2 − j

r
− ñ r , j+1

j

r

+ ñ r , j
t ′2(k−1)−r+ j − t + t − t ′2(k−r−1)+ j

r∆′

=
r

j=2
Σ ñ r , j−1

t ′2k − t

r∆′
− ñ r , j−1

(r + 2 − j)∆′
r∆′

− ñ r , j
t ′2(k−1)−r+ j − t

r∆′

+ ñ r , j
t − t ′2(k−r−1)+ j

r∆′
+ ñ r , j+1

t − t ′2(k−r−1)

r∆′
− ñ r , j+1

j∆′
r∆′

(7.5d)=
r

j=2
Σ(ñ r , j−1 + ñ r , j)

t ′2(k−1)−r+ j − t

r∆′
+ (ñ r , j + ñ r , j+1)

t − t ′2(k−r−1)+ j

r∆′
,

which all derive from the fact that ñ r ,1 = 1 and ñ r , j = d j−1

dt j−1
(t + 1)r

(j−1)!
t=0

= r (r − 1)...(r − j + 2)
(j − 1)! ,

j = 2, . . . ,r + 1. Now, rearranging terms slightly, we get

Bk,r+1,tN
(t) =

1

2r

î
ñ r ,1

t − t ′2(k−r−1)

r∆′
B2(k−1)−r + ñ r ,1

t ′2k−r−1 − t

r∆′
B2k−r−1

+
r

j=1
Σ(ñ r , j + ñ r , j+1)

t − t ′2(k−r−1)+ j

r∆′
B2(k−1)−r+ j +

t ′2k−r+ j−1 − t

r∆′
B2k−r+ j−1

(7.5e)+ ñ r ,r+1
t − t ′2k−r−1

r∆′
B2k−1 + ñ r ,r+1

t ′2k − t

r∆′
B2k

.

Referring to (7.2a) and noting thatñ r ,1 = ñ r+1,1 = 1, ñ r ,r+1 = ñ r+1,r+2 = 1, and

ñ r , j + ñ r , j+1 = ñ r+1, j+1, j = 1, . . . ,r + 1, we see that

(7.5f)Bk,r+1,tN
(t) =

1

2r

r+2

i=1
Σ ñ r+1,i B2k−r+i−2,r+1,tN ′(t) ,

which verifies that (7.4) holds forò = r + 1.

Corollary 7.2. Let r ≥ 1 and ñ r ,i be thei-th coefficient of the polynomial (t + 1)r . Then, for

splines defined on uniform knot sequences, given u ∈∈ L(r)
N with coefficients ó k,

k = 1, . . . ,N + r −1, u is also a member ofL(r)
2N with coefficientsô k, k = 1, . . . , 2N + r −1 giv en,

for r odd, by

- 58 - Chap. 2

(7.6a)
õ

k =
1

2r−1

î

r+1

2

i=1
Σ ö (k+r)/2−i+1 ÷ r ,2i−1

r+1

2

i=1
Σ ö (k+r+1)/2−i ÷ r ,2i

, k odd

, k ev en

,

and, forr ev en, by

(7.6b)
õ

k =
1

2r−1

î

r+1

2

i=1
Σ ö (k+r)/2−i+1 ÷ r ,2i−1

r+1

2

i=1
Σ ö (k+r−1)/2−i+1 ÷ r ,2i

, k ev en

, k odd

,

where p is the smallest integer n such thatn ≥ p and p is the largest integer n such that

n ≤ p.

Proof. In the following, setBk,r ,tN ′(t) 0 if k < 1 or k > 2N + r − 1. Fromequation (7.1a) and

Proposition 7.1,

u(t) =
N+r−1

k=1
Σ ö kBk,r ,tN

(t) =
N+r−1

k=1
Σ ö k

1

2r−1

r+1

i=1
Σ ÷ r ,i B2k−r+i−1,r ,tN ′(t)

=
2(N+r−1)

k′ = 1

k′ odd

Σ ö k′+1

2

1

2r−1

r+1

i=1
Σ ÷ r ,i Bk′−r+i ,r ,tN′ (t)

=
2(N+r−1)−1

k′ = 1

k′ odd

Σ ö k′+1

2

1

2r−1

r+1

2

j=1
Σ ÷ r ,2 j−1Bk′−r+2 j−1,r ,tN′ (t) +

r+1

2

j=1
Σ ÷ r ,2 j Bk′−r+2 j ,r ,tN ′(t)

=
2(N+r−1)

k′ = 1
Σ 1

2r−1

î

r+1

2

j=1
Σ ö k′+1

2
÷ r ,2 j−1Bk′−r+2 j−1,r ,tN′ (t)

r+1

2

j=1
Σ ö k′

2
÷ r ,2 j Bk′−r+2 j−1,r ,tN ′(t)

k′ odd

k′ ev en

- 59 - Chap. 2

(7.7a)=
1

2r−1

î

r+1

2

j=1
Σ

2N+r−3+2 j

k=2 j−r
Σ ø k+r

2
+1− j ù r ,2 j−1Bk′,r ,tN′ (t)

r+1

2

j=1
Σ

2N+r−3+2 j

k=2 j−r
Σ ø k+r+1

2
− j ù r ,2 j Bk′,r ,tN ′(t)

k + r ev en

k + r odd

.

Thus, ifr is odd, we can write, abbreviating Bk,r ,tN ′(t) with Bk,

u(t) =
1

2r−1

î

2N+r−1

k=2−r
Σ

ø k+r

2
ù r ,1

ø k+r−1

2
ù r ,2

Bk +
2N+r+1

k=4−r
Σ

ø k+r

2
−1 ù r ,3

ø k+r−1

2
−1 ù r ,4

Bk + . . . +
2(N+r−1)

k=1
Σ

ø k+1

2
ù r ,r

ø k

2
ù r ,r+1

Bk

,

where the top row is for k odd and the bottom row is for k ev en. If r is even, we can write

u(t) =
1

2r−1

î

2N+r−1

k=2−r
Σ

ø k+r

2
ù r ,1

ø k+r−1

2
ù r ,2

Bk +
2N+r+1

k=4−r
Σ

ø k+r

2
−1 ù r ,3

ø k+r−1

2
−1 ù r ,4

Bk + . . . +
2(N+r)−1

k=1
Σ

ø k

2
ù r ,r+1

0

Bk

,

where, the top row is for k ev en and the bottom row is for k odd. Now, by collecting the terms for

k ∈∈ { 1, . . . , 2N + r − 1 } and forming the expression

(7.7b)u(t) =
2N+r−1

k=1
Σ ú kBk,r ,tN ′(t) ,

we see that the coefficientsú k are as given by (7.6a,b).

Lemma 7.3. Let N = { 2n } ∞
n=1. Then, L(r)

N1
⊂ L(r)

N2
for any N1, N2 ∈∈ N such thatN1 < N2.

Furthermore,

(a) Given u ∈∈ U and N = 2n < ∞, there exists j n ∈∈ N, j n < ∞ and u j n
∈∈ U(r)

j n
such that

||u − u j n
|| < 1/ N.

(b) Suppose there is a sequence{ uN } N ∈∈ N such thatuN ∈∈ U(r)
N anduN → u. Thenu ∈∈ U.

Proof. The nesting of subspaces defined on uniform knot sequences follows directly from

Corollary 7.2. Nesting for subspaces defined on general knot sequences follows from the knot

subdivision results in70 . and [69]

(a) This result is obvious for the caser = 1 (sinceuN ∈∈ L(1)
N is piecewise constant).So assume

that r ≥ 2. Since u ∈∈ Lm
∞,2[0, 1] ⊂ Lm

2 [0, 1] we have, for any û > 0, that there exists

u′ ü ∈∈ Cm[0, 1] (space of continuous functions,u(⋅), with u(t) ∈∈ IRm, t ∈∈ [0, 1]) such that

||u − u′ ü ||2 ≤ û , [71, Theorem 3.14 (p. 69)].Chooseû = 2 / (5 + m)N. We will construct fromu′ ü
- 60 - Chap. 2

another function,uý such that ||u − uý ||2 ≤ þ and a + þ ≤ uý (t) ≤ b − þ for all t ∈∈ [0, 1]. This

allows us to approximateuý with anr -th order spline in such away that by allowing enough knots

for this spline (and using the fact that the spline subspaces nest) its coefficients ÿ k satisfy

ÿ k ∈∈ U .

With (⋅)i denoting thei-th row of a vector, define the continuous functionuý : [0, 1] → IRm

as follows:

(7.8a)uiý (t) =

î

bi − þ
u′ iý (t)
ai + þ

if u′ iý (t) > bi − þ ,

if ai + þ ≤ u′ iý (t) ≤ bi − þ ,

if u′ iý (t) < ai + þ ,

i ∈∈ m , t ∈∈ [0, 1] ,

Note that, for allt ∈∈ [0, 1], ai ≤ ui (t) ≤ bi since u(t) ∈∈ U . Thus, if u′ iý < ai + þ , then either

(i) ai ≤ ui (t) ≤ ai + þ = u iý (t), in which case, 0≤ uiý (t) − ui (t) ≤ uiý (t) − ai = þ , and therefore

(7.8b)(uiý (t) − ui (t))2 = þ 2 ≤ u′ iý − ui (t))2 + þ 2 ,

or, (ii) u i (t) > ai + þ , in which case 0< ui (t) − uiý (t) < ui (t) − u′ iý (t), and therefore

(7.8c)(uiý − ui (t))2 < (u′ iý (t) − ui (t))2 ≤ (u′ iý (t) − ui (t))2 + þ 2 .

A similar argument holds for the caseu′ iý > bi − þ . For the case bi ≤ u′ iý ≤ ai ,

(uiý (t) − ui (t))2 = ((u′ ý)i (t) − ui (t))2. Thus, in all cases, (ui (t) − uiý (t))2 ≤ (ui (t) − u′ iý (t))2 + þ 2.

Therefore, we have

(7.8d)||u − uý ||22 = ∫
1

0

m

i=1
Σ(ui (t) − uiý (t))2dt ≤ ∫

1

0

m

i=1
Σ((ui (t) − u′ iý (t))2 + þ 2) dt = ||u − u′ý ||22 + mþ 2 .

Thus, ||u − uý ||2 ≤ (1+ m) þ . Since u(⋅) is a continuous function, for eachi ∈∈ m, the modulus of

continuity for uiý , � (uiý , �) =. max { |uiý (t1) − uiý (t2)| | |t1 − t2| ≤ � } , goes to zero as� → 0.

Thus, by[63, Theorem XII.1 (p. 170)], there exists an integer N1 = 2n1 < ∞ and a spline

uN1
∈∈ L(r)

N1
such that

(7.8e)||uý − uN1
||2 ≤ ||uý − uN1

||∞ ≤
þ
2

.

Let Dr ,∞ be as given on page 155 of[63] (for all r ≥ 2, 1≤ Dr ,∞ < ∞). SinceuN1
is a spline with

bounded coefficients, it is Lipschitz continuous.Hence, there exists n2 ∈∈ IN, n1 < n2 < ∞, such

that, withN2 = 2n2,

(7.8f)||uN1
(t1) − uN1

(t2)|| ≤
þ

Dr ,∞ − 1
, \/ t1, t2 ∈∈ [0, 1] such that |t1 − t2| ≤ (r − 1) / N2 .

Now, for k = 1, . . . ,N2 + r , define the intervals Tk =. [tk−r , tk−1], with tk = k / N2, and define the

quantities M i
k = maxt ∈∈ Tk

ui
N1

(t), and mi
k = mint ∈∈ Tk

ui
N1

(t). Since for t1, t2 ∈∈ Tk,

- 61 - Chap. 2

|t1 − t2| ≤ (r −1) / N2, we see that

(7.8g)M i
k − mi

k =
t1,t2 ∈∈ Tk

max ||ui
N1

(t1) − ui
N1

(t2)|| ≤
�

Dr ,∞ − 1
, for t1, t2 ∈∈ Tk , i ∈∈ m .

Thus,

(7.8h)Dr ,∞ ≤
�

M i
k − mi

k

+ 1 , \/ i ∈∈ m .

Next, since LN1
⊂ LN2

by Corollary 7.2,uN1
∈∈ LN2

. Hence, there exists { � k } N2+r
k=1 ⊂ IRm

such thatuN1
(t) = ΣN2+r

k=1 � k
�

k(t). Thus,by [63,Corollary XI.2 (p. 156)],

(7.8i)|� i
k −

M i
k + mi

k

2
| ≤ Dr ,∞

M i
k − mi

k

2
≤ 1

2
� +

M i
k − mi

k

2
,

where we used (7.8h) for the second inequality. Therefore,− 1
2
� + mi

k ≤ � i
k ≤ 1

2
� + M i

k. But,

from (7.8e), we see thatM i
k =. maxt ∈∈ Tk

ui
N1

(t) ≤ maxt ∈∈ Tk
ui� (t) + 1

2
� = b i − 1

2
� and

mi
k =. mint ∈∈ Tk

ui
N1

(t) ≥ mint ∈∈ Tk
ui� (t) − 1

2
� = a i + 1

2
� . Thus, ai ≤ � i

k ≤ bi which implies that

� k ∈∈ U . Finally, by (7.8d) and (7.8e),

(7.8j)||u − uN1
||2 ≤ ||u − u′ � ||2 + ||u′ � − u� ||2 + ||u� − uN1

||2 ≤ � + (1 + m) � +
�
2

=
1

N
,

since � = 2 / (5 + m)N. Thus, the proposition holds withj n = 2n2 andu j n
∈∈ U(r)

j n
.

(b) Referring to[63, Corollary XI.1 (p. 155)] and using the fact that the coefficients for each com-

ponent,i = 1, . . . ,m, of the control satisfiesai ≤ � i
k ≤ bi for eachk = 1, . . . ,N + r − 1, we see

thatU(r)
N ⊂ U. The result follows immediately sinceU is closed.

Remark 7.4. From the proof of Proposition 7.3(b), we see thatU(r)
N ⊂ U. Thus, from the defi-

nition of UN in Section 4 for representation R1, we hav e that

U(r)
N ⊂ U ∩ L(r)

N ⊂ U ∩ LN ⊂ UN . Hence, while control constraint violations are possible for

u ∈∈ UN , they are not possible foru ∈∈ U(r)
N .

Theorem 7.5. (Epiconvergence) Suppose that Assumptions 3.1(a), 4.1 and 4.9 hold and that

Conjecture 5.11 is true.Let N = { 2n } ∞
n=1. Then, the problems{ CPN } N ∈∈ N converge epi-

graphically to the problemCP asN → ∞.

Proof. Given u ∈∈ U, there exists, by Assumption 4.9, a sequence{ uN } ∞
N=1 such thatuN ∈∈ U,

uN → u and � c(uN) < 0. By Lemma 7.3(a), for each N = 2n, there exists j n ∈∈ N and

u j n
′ ∈∈ U(r)

j n
such that ||uN − u j n

′|| ≤ 1 / N. It now follows from the proof in Theorem 4.10 that part

(a) of Definition 2.1 is satisfied.That part(b) of Definition 2.1 is satisfied follows from Lemma

7.3(b) and the proof in Theorem 4.10.

- 62 - Chap. 2

To show consistency of approximations, what remains is to compute the gradients of the

cost and constraint functions with respect to elements ofL(r)
N and show that the optimality func-

tions for the approximating problems satisfy condition (2.3).To compute the gradients∇ u f �N(u),

we first define the spline coefficient space

(7.9a)L(r)
N =. (

N+r−1
× IRm , /

\ ⋅, ⋅ \
/ L(r)

N
, || ⋅ ||L(r)

N
)

and the map

(7.9b)SN,r : L (r)
N → L(r)

N ,

which takes elementsu = ΣN+r−1
k=1 � k 	 k(t) and maps them to� = { � k } N+r−1

k=1 , with � k ∈∈ IRm.

When the quantity� ∈∈ L(r)
N appears in a linear algebra statement, it is to be considered a ‘‘short-

fat’’ matrix

(7.9c)� = [� 1
. . . � N+r−1] ∈∈ IRm×N+r−1 .

It is clear thatSN,r is a linear bijection.Proceeding as in Section 4, we define the inner product

on L(r)
N in the following way. Giv en � ,
 ∈∈ L(r)

N , let u = S−1
N,r (�) and v = S−1

N,r (
). The inner

product must satisfy

/
\ � ,
 \

/ L(r)
N

= /
\ u, v \

/ L2
= ∫

1

0

/
\ ΣN+r−1

k=1 � k 	 k(t) ,ΣN+r−1
l=1
 l 	 l (t) \

/ dt

(7.10a)=
N+r−1

k=1
Σ

N+r−1

l=1
Σ /

\ � k,
 l
\
/ ∫

1

0
	 k(t) 	 l (t) dt = /

\ � M � ,
 \
/ l2 .

Thus,M � is the (N + r − 1) × (N + r − 1) matrix whosek, l -th entry is given by

(7.10b)[M �]k,l = ∫
1

0
	 k(t) 	 l (t) dt .

An alternate means of determiningM � is to make use of the fact thatL(r)
N ⊂ L1

N whereL1
N

was defined in (4.6) as the subspace of piecewise polynomial controls.This will allow us to

derive a more useful formula forM � and enable us to use the results forL1
N in Section 5 to show

consistency. Let M N be as defined in (4.9b) withM = M1, the quadrature matrix for representa-

tion R1. Recall from Section 4 that, given u ∈∈ L1
N , u = VA,N(u) ∈∈ L1

N are its control samples.

Thus, from (7.1a), the composite mapVA,N ° S−1
N,r , which computes the control samples of

u ∈∈ L(r)
N from its spline coefficients � = SN,r (u), satisfies

(7.11a)u = VA,N ° S−1
N,r (�) = � ΦT

A,N ,

whereΦA,N is anNr × (N + r −1) matrix whose (lr + j , k)-th entry, l = 0, . . . ,N −1, j = 1, . . . ,r ,

- 63 - Chap. 2

and k = 1, . . . ,N + r −1 is � k(l ,i j
) with i j ∈∈ I . The index set I is defined in (2.4.4).In other

words, the elements of thek-th column ofΦA,N are the control samples of thek-th B-spline func-

tion � k(⋅). Thus,

/
\ u, v \

/ L2
= /

\ SN,r (u) M � , SN,r (v) \
/ l2 = /

\ VA,N(u) M N ,VA,N(v) \
/ l2

= /
\ VA,N ° S−1

N,r ° SN,r (u) M N ,VA,N ° S−1
N,r ° SN,r (v) \

/ l2

(7.11b)= /
\ SN,r (u) ΦT

A,N M N , SN,r (v) ΦT
A,N

\
/ l2 .

Therefore,

(7.11c)M � = ΦT
A,NM NΦA,N .

It is not obvious that (7.11c) is equivalent to (7.10b) and hence independent of the Butcher array

A. To see that this is so, note that thek, j -th element ofM � , as giv en in (7.11c), is

(7.11d)[M �]k,l =

� k(0,i1)

. . . � k(0,i r)
. . . � k(N−1,i1)

. . . � k(N−1,i r)

M N

� l (0,i1)...
� l (N−1,i r)

.

This is just the inner-product ofVA,N(� k(t)) andVA,N(� l (t)) in L1
N . Hence, because of the way

M1 was defined in Section 4, [M �]k,l = /
\ � k(t), � l (t) \

/ L2
.

We are now in a position to compute the gradients of the cost and constraint functions with

respect to elements of the finite-dimensional Hilbert spaceL(r)
N . For u ∈∈ L(r)

N , we will use the

shorthand notation

(7.12a)d� fN(u) =.

d

d � 1
fN(SN,r (u)) . . . d

d � N+� −1
fN(SN,r (u))

to denote the derivative of fN(�), � = SN,r (u), with respect to the spline coefficients � . This

quantity is the gradient with respect to the Euclidean norm but not the norm that we have defined

on L(r)
N . Note thatd� fN(u) ∈∈ IRm× (N+� −1) is a ‘‘short-fat’’ matrix; if m = 1 (single input system),

thend� fN(u) is a row vector. Let fN : L (r)
N → IR. Then, the differential of fN is a bounded linear

operator onL(r)
N which, by the Riesz representation theorem, can be represented as/

\ ∇ fN(u), � u \
/

where∇ fN(u) ∈∈ L(r)
N . Therefore, using (7.10a) and the definition of directional derivatives, we

have, for u ∈∈ L(r)
N , and � u ∈∈ L(r)

N ,

(7.12b)/
\ ∇ u fN(u), � u \

/ = /
\ SN,r (∇ u fN(u)) M � , ��� \

/ l2 = /
\ d� fN(u) , ��� \

/ l2 ,

where��� = SN,r (� u), � = SN,r (u) and, by using the chain rule along with (7.11a),

- 64 - Chap. 2

(7.12c)d� fN(u) = du fN(u) ΦA,N ,

with du fN(u) defined by (5.5c).Thus, foru ∈∈ L(r)
N ,

(7.12d)∇ u fN(u) = S−1
N,r (du fN(u)ΦA,N M−1�) .

It is important to note that the expression in (7.12d) for the gradient onL(r)
N is not the same

as the gradient∇ fN(u) = V −1
A,N(du fN(u) M−1

N) in L1
N restricted toL(r)

N ⊂ L1
N because the defini-

tion of the gradient depends on the space of perturbations upon which the differential of fN(⋅) is

allowed to act.However, from (7.12d) and (7.11a), we can relate the samples of∇ fN(u) on L(r)
N

to the discrete-time derivative of fN(⋅) as follows,

(7.13)VA,N(∇ fN(u)) = VA,N ° S−1
N,r (du fN(u)ΦA,NM−1�) = du f (u)ΦA,NM−1� ΦT

A,N .

We note thatΦA,NM−1� ΦT
A,N ≠ M−1

N .

The expression in (7.13) can be used in the proof of Theorem 5.6 to show that there exists
� < ∞ such that ||∇ u fN(u) − ∇ u f (u)|| ≤ � /N for all u ∈∈ L(r)

N ⊂ HN . The derivation of (5.13d)

starting from (5.11d) must be modified by taking into account the fact that entries of

ΦA,NM−1� ΦT
A,N go to zero away from the diagonal andΦA,NM−1� ΦT

A,N11 → 11 as N → ∞, where 11

is a compatible column vector of ones.Therefore, the optimality functions hypoconverge by the

result of Theorem 5.9 and thus satisfy condition (2.3).This, along with Theorem 7.5, shows that

the approximating problemsCPN , with feasible setsH(r)
N and optimality functions� N given by

(5.8a) using (7.12d) as the expression for the gradients, are consistent approximations to (CP, �).

We state this result as a theorem:

Theorem 7.6. Suppose that Assumptions 3.1, 4.1 and 4.9 and equation (5.18) hold and that

Conjecture 5.11 is true.Let N = { 2n } ∞
n=1. Then, with CPN as defined in (7.3c) and� N as

defined in (5.8a), the family of approximating pairs (CPN , � N), N ∈∈ N, constitute consistent

approximations for the pair (CP, �) .

Example (Linear Splines --- uniform knot sequence)

In this case,r = 2 and the basis functions are given by

(7.14)
�

k(t) =

î

(t − tk−2)/∆
(tk − t)/∆

if t ∈∈ [tk−2, tk−1]

if t ∈∈ [tk−1, tk]
.

Let u, v ∈∈ L(r)
N and � = SN,r (u) and � = SN,r (v). Sincethese hat functions have a support of

only two time intervals (2∆), M � , giv en by equation (7.10b), is

- 65 - Chap. 2

(7.15)M � =
∆

(2r − 1)!

2

1

1

4

1

1

4 1
. . .

1 4

1

1

2

.

Example (Cubic Splines --- uniform knot sequence)

In this case, r=4 and the basis functions are given by (7.2c). Assuming k ≤ l ,

∫
1

0

�
k(t)

�
l (t) dt = ∫

b

a

�
k(t)

�
l (t) dt where a = max { 0,t l−4 } and b = min { tk, 1 } since each B-

spline has support of width 4∆. In particular, [M �]k,l = 0 if |k − l | > 3. Thus,

(7.16)M � =
∆

(2r − 1)!

20

129

60

1

129

1208

1062

120

1

60

1062

2396

1191

120
. . .

1

120

1191

2416

1191

1

120

1191

2416
. . .

1

120

1191

1

120 1
. . .

.

Remark 7.7. Formula (7.10b) for determiningM � can be applied in a straightforward manner

using either a numerical integration routine or by evaluating the integrals (whose integrands are

piecewise polynomials) analytically. Some care must be taken when applying formula (7.11c).

Specifically, it must be remembered that the orderr of the splines inL(r)
N will be smaller than the

number of stagess in the RK method if some of theci values in the Butcher array are repeated.

For example, the fourth-order method RK4 used in Section 6 withc = (0, 1/2, 1/2, 1),hasr = 3.

In this case, formula (7.11c) applies to quadratic splines, not cubic splines.Recall, though, that

(7.11c) is actually independent of the RK parameters.So, for a� -th order spline, it is easiest to

just choosec = (c1, . . . ,c�) wherec j = 1 / j , j = 1, . . . ,� , and not consider which RK method is

going to be used.

Both formulas also work when the knot sequence contains repeated interior knots.In this

case, care must be taken at any point where the spline is discontinuous to ensure that the values of
�

k(� l ,i j
) are evaluated at the correct side of the discontinuity.

Remark 7.8. For r ≥ 2, M−1� is a dense matrix.However, M � is banded and diagonally domi-

nant. Hence,for u ∈∈ L(r)
N , we can findd(u) =. SN,r (∇ u fN(u)) = d � fN(u)M−1� efficiently by solv-

ing

(7.17)d(u) M � = d � fN(u) ,

where� = SN,r (u), using Gaussian elimination without pivoting [72,page 119].

- 66 - Chap. 2

2.7.1 Implementation of Spline Coor dinate T ransf ormation.

The idea of coordinate transformations introduced in Section 6 can also be used with spline repre-

sentations for the finite dimensional control subspaces.In this case we use the transform matrix

M � to set up the coordinate transformation:

(7.18a) ∼ = M1/2�

(7.18b)f
∼

N(∼) =. fN(∼ M−1/2�) .

Correspondingly, with u = S−1
N,r (

 ∼ M−1/2�), the gradient is given by the expression

(7.18c)∇ � ∼ fN(u) = d � fN(∼ M−1/2�)M−1/2� .

BecauseM1/2� and its inverse are dense matrices, a factorization approach is needed in the imple-

mentation of this transformation.Since, M � is symmetric it has a Schur decomposition

M � = UDUT with U a unitary matrix andD a diagonal matrix, see[72, page 410].Thus,

becauseUT = U −1, M1/2� = UD1/2UT andM−1/2� = UD−1/2UT (see [72, page 540]).Note that the

factorization need be performed only once.

Besides the computational burden of computingM1/2� , the fact thatM1/2� is not a diagonal

matrix causes another problem: simple bound constraints on are transformed into general linear

constraints on ∼ (cf. Remark 6.1).Both of these problems can be alleviated for second order

splines using the following considerations. First, we recall from (7.11c) that

M � = ΦT
A,NM NΦA,N . In this expression,M N is the block diagonal matrix

(7.19a)M N =. diag[∆0M1, ∆1M1, . . . ,∆N−1M1]

where M1 is the quadrature matrix defined for control representationR1 in (4.9b). Next, note

from (7.11a) that given avector ∈∈ L(r)
N , ΦT

A,N = VA,N ° S−1
N,r (

) ∈∈ L1
N . Thus,M � is justM N

transformed from the basis forL1
N to the basis forL(r)

N . Now, according to Proposition 5.5, the

control samples of solutions to the discretized problem (PN , ! N), and hence, the spline that inter-

polates those samples, do not depend on which control representation,R1 or R2, is being used.

Hence, we can constructM N from the quadrature matrixM2 instead ofM1 without affecting the

solutions of (PN , ! N). For r = 2, we have

M2 =

1
2

0

0
1
2

.

Thus, letting

- 67 - Chap. 2

(7.19b)M N =. diag[∆0M2 , ∆1M2 , . . . , ∆N−1M2] ,

we get the transformation matrix

(7.19c)M " =

∆0
∆0 + ∆1

2 ∆1 + ∆2

2 . . .
∆N−2 + ∆N−1

2
∆N−1

which is diagonal.Note that this idea will not produce a diagonalM " for higher order splines.

However, in the next chapter, we argue against using higher order splines for problems with con-

trol constraints anyway.

In the following table, we list the number of iterations required to solve a few optimal con-

trol problems with and without using the coordinate transformation.For each problem, we used a

uniformly spaced integration mesh with a discretization level of N = 50. Theconvergence toler-

ance was set at# = 10−6 when using the coordinate transformation and# = 10−6 / √ N when not

using the coordinate transformation (to make the convergence criterion equivalent). This is

equivalent to settingM" = 1
N I whereI is the identity matrix.For problems with endpoint and/or

trajectory constraints, we set the constraint violation tolerance at 10−4.

For the two unconstrained problems, we used both the projected descent algorithm (P-

Descent) in conjunction with the L-BFGS (limited memory quasi-Newton method) and an SQP

method (NPSOL).We solved the problems using both a second order (RK2) and a fourth order

(RK4) integration methods.The order of the spline representation is indicated byr . For second

order splines,r = 2, we usedM " as given by (7.11c) and by (7.19c).The number of iterations

required when using expression (7.19c) is the first number in ther = 2 column and the number of

iterations required when using (7.11c) is the second number.

The optimal control problems listed in table 7.1 are described in Appendix B.The last three

rows of this table pertain to problems with control bounds.We did not, therefore, solve these

problems with third order splines.

- 68 - Chap. 2

RK2 RK4

With Without With Without

Problem Method r = 2 r = 2 r = 2 r = 3 r = 2 r = 3

LQR P-Descent 5 , 5 121 10 , 5 5 191 261

LQR SQP 5 , 15 15 10 , 5 5 26 39

Rayleigh P-Descent 13 , 15 14 16, 14 14 19 281

Rayleigh SQP 18 , 23 40 18, 18 20 56 78

Constr. Rayleigh SQP 24 , 35 20 22, 22 24 26 34

Switch SQP 1 , 18 8 12 , 1 6 18 25

Bang SQP 12 9 12 9

Goddard SQP 26 372 30 382

Goddard3 SQP 24 382 22 292

Table 7.1: Number of iterations required to solve various optimal control problems with and
without the use of the spline coordinate transformation (7.18).The order of the spline representa-
tion is indicated byr . Columns with two numbers show the number of iterations required when
M $ is determined with formula (7.19c) or (7.11c) respectively. Constr. Rayleigh is the Rayleigh
problem with the endpoint constraintx1(2. 5)= 0.

In this table a superscript1 indicates that the projected descent method terminated without

achieving the requested tolerance because the step-size became too small.A superscript2 indi-

cates that the SQP reached the requested tolerance but that iterates,{ % i } , f ailed to converge in

the sense that ||% i+1 − % i || was not small enough.The last two rows are results for the Goddard

maximum ascent rocket problem.This is a singular optimal control problem and was solved with

a 10−4 penalty on the variation of the control derivative (see Chapter 4.5).The last row,

Goddard3, includes a trajectory constraint on the dynamic pressure.We can make the following

observation from the data in this table.

• With the exception of of constrained Rayleigh using RK2 and Bang, the number of iterations

when using the coordinate transformation is less than without the transformation; sometimes

substantially less.

• In sev eral cases, the optimization procedure was not able to terminate successfully when the

coordinate transformation was not used.

• In comparing the results of the first row of this table to Table 6.1, we see that the effect of the

coordinate transformation on the number of iterations is less pronounced for splines than it is

for controls inL1
N or L2

N . This is due to the spline smoothness.

- 69 - Chap. 2

• For problems without control constraints, formula (7.11c) forM & , when using second order

splines, gives better results for RK4 than formula (7.19c) gives. Thereverse is true with RK2.

We hav eno explanation for this behavior. This suggests the following rule for which formula

for M & to use: if the problem has control bounds or if using RK2, use formula (7.19b), other-

wise use (7.11c).

2.8 CONCLUDING REMARKS

We hav eshown that a large class of Runge-Kutta integration methods can be used to con-

struct consistent approximations to continuous time optimal control problems.The construction

is not unique: it is determined by the selection of families of finite dimensional subspaces of the

control space.Because the elements of these subspaces are discontinuous functions, appropriate

extensions of Runge-Kutta methods must be used.Not all convergent Runge-Kutta methods,

however, produce consistent approximations.This was observed both numerically and by failure

to prove consistency of approximation with these methods.We hav econsidered two selections of

control subspaces, one defined by piecewise polynomial functions and one by piecewise constant

functions. Splinescan also be used and are treated in Section 7.Each selection has some advan-

tages and some disadvantages. Afinal selection has to be made on the basis of secondary consid-

erations such as the importance of approximate solutions satisfying the original control con-

straints, the form that the control constraints take in the discrete-time optimal control problems, or

the accuracy with which the differential equation is integrated.

As in our construction, the basis functions that are used implicitly to define the finite dimen-

sional control subspaces may turn out to be non-orthonormal.In this case a non-Euclidean inner

product and corresponding norm should be used in solving the resulting approximating discrete-

time optimal control problems.Neglecting to do so amounts to a change of coordinates that can

lead to serious ill-conditioning.This ill-conditioning is demonstrated in Section 6 and Section 7.

Finally, the use of the framework of consistent approximations opens up the possibility of

developing optimal discretization strategies, such as those considered for semi-infinite program-

ming in[57]. Sucha strategy provides rules for selecting the number of approximating problems

to be used as well as the discretization level, the order of the RK method, and the number of itera-

tions of a particular optimization algorithm to be applied for each such approximating problem,

so as to minimize the computing time needed to reach a specified degree of accuracy in solving an

optimal control problem.

- 70 - Chap. 2

Chapter 3

PROJECTED DESCENT METHOD FOR PROBLEMS

WITH SIMPLE BOUNDS

3.1 INTRODUCTION

In this chapter, we consider a class of finite dimensional optimization problems that arises

from the discretization of optimal control problems with simple control bounds.Because the dis-

cussion in this Chapter is within the realm mathematical programming, we will maintain the con-

vention of using thex, rather than the control variableu, to represent the decision variables of a

mathematical program.

Consider the problem

x ∈∈ IRn
min f (x) subject to xi ≥ 0 , i = 1, . . . ,n ,P

where f : IRn → IR is continuously differentiable andx = (x1, x2, . . . ,xn).

Algorithms for solving problemP based on the projection of a descent direction were first

proposed by Goldstein[73] and Levitin and Polyak[74]. In [75], Bertsekas used the projection

operator defined in[73,74] to construct a projected gradient descent algorithm with an Armijo

step-size rule for solvingP. Whenever a sequence constructed by this algorithm enters a suffi-

ciently small neighborhood of a local minimizerx̂ satisfying standard second order sufficiency

conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the

active constraint set atx̂ is identified in a finite number of iterations.This fact was used in[76] to

construct a modified projected Newton method, again using the projection operator defined

in [73,74], with a modified Armijo step-size rule.The algorithm in[76] employs the Newton

search direction only in the estimated subspace of non-binding (inactive) variables, and uses the

gradient direction in the estimated subspace of binding (active) variables. Underreasonable

assumptions, Bertsekas showed that his projected modified Newton method for solvingP is glob-

ally convergent withQ-quadratic rate.The algorithm in[76] is easily extended to problems with

- 71 - Chap. 3

simple bounds of the formbi
l ≤ xi ≤ bi

u, i = 1, . . . ,n wherebi
l ≤ bi

u. Bertsekas also provides an

extension for handling general linear constraints of the formbl ≤ Ax ≤ bu. The Bertsekas pro-

jected Newton method was further extended to handle general convex constraints in[77]. The

efficiency of this family of algorithms derives from the fact that(a) the search direction computa-

tion is simple,(b) any number of constraints can be added to or removed from the active con-

straint set at each iteration, and(c) under the standard second order sufficiency condition the

algorithms identify the correct active constraint set after a finite number of iterations.This last

fact implies that the rate of convergence depends only on the rate of convergence of the algorithm

in the subspace of decision variables that are unconstrained at the solution.

Another example of a projection based algorithm for solving optimization problems with

simple bounds can be found in[78] where Quintana and Davison present aconceptualalgorithm

with exact line search based upon a modified version of the Fletcher-Reeves conjugate gradient

method in function space combined with a projection operator. This algorithm was intended for

the solution of optimal control problems with bounded controls.The soundness of the algorithm

in [78] is not clear because the proof of convergence assumes that there exists, at each iterationk,

a step-size' k > 0 that causes a decrease in function value. However, the authors do not show that

such a positive step-size exists. Furthermore,Quintana and Davison require ana posteriori

assumption (their eqn. (26)) that is not directly related to the problem or the method under consid-

eration.

More recently, there have been some papers based on ideas related to Bertsekas’ projected

gradient scheme.A trust region algorithm for problems with simple bounds is analyzed in[79].

On each iteration of this algorithm, a projection operator is used to find the generalizedCauchy

point of a quadratic model to the objective function. Thenthe quadratic model is further mini-

mized on the intersection of the trust region with the feasible set while keeping the variables

bounded at the Cauchy point fixed. Thisalgorithm is extended to problems with general con-

straints in[80] using an augmented Lagrangian approach.A scheme similar to that proposed

in [79] is given in [81]. However, in [81] the quadratic model is based on a positive definite, lim-

ited-memory BFGS estimate of the Hessian.Therefore, a trust region is not needed and the

approximate minimizer of the model is used to construct a search direction for a projected line

minimization of the objective function. Theprojected gradient idea is also used in[82] and[83]

to rapidly identify the active constraint set for bound constrained quadratic programming.

Finally, the authors of[84] have extended the projected Newton method of[76] to optimal control

problems with control bounds.

Our results extend those provided in[76] by showing that the concept of Bertsekas’ projec-

tion method can be used with any search direction and step-size rules that satisfy general

- 72 - Chap. 3

conditions similar to those in[85]. For example, we show that our version of the projection

method can be used with search directions that are determined by a conjugate gradient in the sub-

space of unconstrained decision variables. Theextension to conjugate-gradient methods is partic-

ularly valuable for solving large-scale optimization problems with simple bound constraints

because conjugate-gradient methods do not require much additional storage or computation

beyond that required by the steepest descent method but, in practice, perform considerably better

than steepest descent.We also use our results to construct an algorithm based on the limited-

memory quasi-Newton method, L-BFGS (described in[86]), for the search direction computa-

tions. Unlike the L-BFGS method used in[81], our update is only used to estimate the Hessian in

the unconstrained subspace and our search direction is obtain directly rather than as an approxi-

mate solution of a quadratic subproblem.

The remainder of this chapter consists of three sections.In Section 2, we define the projec-

tion operator and state an algorithm model that can use any search directions that satisfy certain

conditions. Thealgorithm uses a modified Armijo rule for the step-size selection.We prove con-

vergence of this algorithm model and the fact that it identifies the correct active constraint set in a

finite number of iterations under second order sufficiency conditions. We also show how to incor-

porate other step-size rules into our algorithm in a way that preserves the convergence properties.

Several of our proofs are similar to those in[76]. As an example of the construction of admissible

search directions for our algorithm, we use the Polak-Ribe`re conjugate gradient formula which

numerical experience has shown to be more effective than the Fletcher-Reeves formulation (an

explanation for this empirical result is given in [87]). We provide one example of the fact that

standard rate of convergence results for the conjugate gradient method still hold for its projected

version. To conclude Section 2, we describe an extension of the algorithm model that handles

simple bounds of the formbi
l ≤ xi ≤ bi

u, i = 1, . . . ,n. In Section 3, we present numerical results

obtained in solving two optimal control problems with simple control bounds.We use three

implementations of our algorithm based on steepest descent, conjugate gradient, and the limited-

memory quasi-Newton (L-BFGS) method for the search direction computations.These numeri-

cal results indicate that the projected conjugate gradient method and the projected L-BFGS

method perform significantly better than the projected steepest descent method.Finally, in Sec-

tion 4, we state our concluding remarks.

- 73 - Chap. 3

3.2 ALGORITHM MODEL FOR MINIMIZATION SUBJECT TO SIMPLE BOUNDS

The algorithm to be presented is described with the help of the following notation: for any

z ∈∈ IRn, the projection operator [⋅]+ is given by

(2.1a)[z]+ =.

max { 0,z1 }
...

max { 0,zn }

,

and, for any search directiond ∈∈ IRn, x ∈∈ IRn and step-size(∈∈ IR+,

(2.1b)x((, d) =. [x + (d]+ .

For any index set I ⊂ { 1, . . . ,n } and x, y ∈∈ IRn, we define /
\ x, y \

/ I =. Σi ∈∈ I xi yi , and

||x||2I =. /
\ x, x \

/ I . Without subscripts,/\ ⋅, ⋅ \
/ and || ⋅ || denote the Euclidean inner product and norm,

respectively, on IRn. Let

(2.1c)B(x,)) =. { x ∈∈ IRn | ||x − x|| ≤) }

denote the closed ball of radius) aroundx. Finally, let

(2.1d)
* =. { x ∈∈ IRn | xi ≥ 0 , i = 1, . . . ,n }

denote the feasible set for problemP.

Definition 2.1. A point x̂ ∈∈
*

is said to be astationary pointfor the problemP if directional

derivative of f (x) at x̂ is non-decreasing in all feasible directions:

(2.2a)df (x̂ ; x − x̂) ≥ 0 , \/ x ∈∈ + ,

or equivalently, for i = 1, . . . ,n,

(2.2b)∂ f (x̂)

∂xi
≥ 0 , and

∂ f (x̂)

∂xi
= 0 if x̂ i > 0 .

Active and almost active bounds. The projected descent algorithm model (Algorithm Model

PD) which we will present requires, for each iteratexk, the definition of sets

I k = I (xk) ⊂ { 1, 2, . . . ,n } and Ak = A(xk) ⊂ { 1, 2, . . . ,n } . The setAk contains the indices

of the ‘‘active’’ o r ‘‘almost active’’ bounds at iterationk and the setI k is the complement ofAk in

{ 1, . . . ,n } . With g(x) = ∇ f (x), we define†

(2.3a)w(x) =. ||x − [x − g(x)]+|| ,

† More generally, w(x) can be defined asw(x) =. ||x − [x − Dg(x)]+|| whereD is a positive definite diagonal matrix.

- 74 - Chap. 3

and

(2.3b), (x) =. min { , , w(x) } ,

where , > 0 is a parameter in Algorithm Model PD.We can see that, (x) = 0 if and only if

x ∈∈ - is a stationary point because the requirement thatx ∈∈ - and that (2.2b) hold is equivalent

to the requirement that

(2.3c)max {− gi (x), − xi } = 0 , i = 1, . . . ,n

which, upon addition ofxi , i = 1, . . . ,n, to both sides, yields [x − g(x)]+ = x , i.e. that w(x) = 0.

Next, for x ∈∈ - , we define

(2.4a)A(x) =. { i ∈∈ 1, . . . ,n | 0 ≤ xi ≤ , (x) , gi (x) > 0} ,

and

(2.4b)I (x) =. { i ∈∈ 1, . . . ,n | i /∈ A(x) } = { i ∈∈ 1, . . . ,n | xi > , (x) or gi (x) ≤ 0 } .

To understand the logic behind the definition of the active constraint index set A(x), first consider

the situation corresponding to, = 0. In this case, ifi ∈∈ A(x), xi = 0 and gi (x) > 0. Thus,xi is

at its bound and, moreover, any movement in - aw ay from that bound will cause an increase in

the objective function. Henceour algorithm will be constructed to leave such anxi unchanged.

When , > 0, as in Algorithm Model PD below, the setA(x) also includes indices of variables that

are almost at their bounds and, becausegi (x) > 0, are likely to hit their bounds during the line

search. Thus,given x ∈∈ - , the setA(x) tends to identify the active constraints at a ‘‘nearby’’

point on the boundary of- .

Note that in Algorithm Model PD, below, the search directions are specified only to the

extent that they satisfy three conditions (stated in (2.5a,b,c)).It is clear that the direction of steep-

est descent, and more generally, any direction of the formdk = − Dkgk whereDk is a symmetric,

positive definite matrix that is diagonal with respect to indicesi ∈∈ Ak and has eigenvalues

bounded from above and away from zero, satisfies these conditions.In the sequel we will show

how dk satisfying these conditions can be constructed using standard algorithms.

The most important property of Algorithm Model PD is that it identifies the correct active

constraint set in a finite number of iterations.Once the correct active constraint set is identified,

the active variablesxi remain at the value of zero while on the orthogonal, ‘‘unconstrained’’ sub-

space Algorithm Model PD behaves as an unconstrained optimization algorithm.Because of this,

the rate of convergence of Algorithm Model PD is that associated with whatever method is used

to determine the components of the search directiondk in the ‘‘unconstrained’’ subspace.

- 75 - Chap. 3

Algorithm Model PD:

Data: . , / ∈∈ (0, 1),M ∈∈ IN, 0 1 ∈∈ (0, 1), 0 2 ∈∈ (1,∞), 1 ∈∈ (0,∞), x0 ∈∈ 2 .

Step 0: Setk = 0.

Step 1: Computegk = ∇ f (xk) and setAk = A(xk), I k = I (xk). If ||gk||I k
= 0 and xi

k = 0 for all

i ∈∈ Ak, stop.

Step 2: Select scalarsmi
k, i ∈∈ Ak, and a search directiondk satisfying the following conditions:

(2.5a)di
k = − mi

kgi
k , 0 1 ≤ mi

k ≤ 0 2 , \/ i ∈∈ Ak ,

(2.5b)/
\ dk, gk

\
/ I k

≤ − 0 1||gk||2I k
,

(2.5c)||dk||I k
≤ 0 2||gk||I k

.

Step 3: Compute the step-size3 k = / m wherem is the smallest integer greater than− M such

that 3 k satisfies the Armijo-like rule:

(2.6a)f (xk(3 k, dk)) − f (xk) ≤ .

î
3 k

/
\ gk, dk

\
/ I k

− /
\ gk, xk − xk(3 k, dk) \

/ Ak

.

Set

(2.6b)xk+1 = xk(3 k, dk) = [xk + 3 kdk]+ .

Step 4: Replacek by k + 1 and go to Step 1.

Note that in (2.5a) one can choosemi
k = 1 for all i ∈∈ Ak. Then the search direction in the sub-

space of active constraints is the steepest descent direction.The criterion ||gk||I k
= 0 is not a prac-

tical test; in a numerical implementation it would instead be required that ||gk||I k
be smaller than a

given tolerance. The1 in the algorithm description is needed in (2.3b) to determine the active

constraint index set.

Remark 2.2. It is easy to see that the the right-hand side of (2.6a) is non-positive. The first

term of the bracketed expression is non-positive because/
\ gk, dk

\
/ I k

≤ − 0 1||gk||2I k
by (2.5b). The

second term is non-negative:

(2.7)/
\ gk, xk − xk(3 k, dk) \

/ Ak
≥ 0,

because for alli ∈∈ Ak, gi
k > 0 and di

k = − mi
kgi

k ≤ − 0 1gi
k < 0 and hencexi

k − xi
k(3 , dk) ≥ 0 for

all 3 ≥ 0.

- 76 - Chap. 3

Remark 2.3. The requirements in (2.5a,b,c) are similar to those used in the Polak-Sargent-

Sebastian Theorem of convergence for abstract, iterative minimization processes[85]; they ensure

that ||dk|| is bounded below by 4 1||gk|| and bounded above by 4 2||gk|| and thatdk does not become

orthogonal togk. To wit, let 5 k be the angle between the vectorsdk and−gk. From (2.5a,b) we

have that

(2.8a)/
\ dk, gk

\
/ ≤ − 4 1 ||gk||2Ak

+ /
\ dk, gk

\
/ I k

≤ − 4 1||gk||2 ,

and from (2.5a,c)

(2.8b)||dk||2 ≤ 4 2
2 ||gk||2Ak

+ ||dk||2I k
≤ 4 2

2 ||gk||2 .

Using these expression in (2.8a) we see that

(2.8c)cos5 k =
− /

\ dk, gk
\
/

||dk||||gk||
≥
4 1

4 2
> 0 .

Remark 2.4. In [76], the search directions are given by dk = − Dkgk where theDk are sym-

metric, positive definite matrices with elements,Dk
ij , that are diagonal with respect to the indices

i ∈∈ Ak, i.e.,

(2.8d)Dk
ji = D k

ij = 0 , \/ i ∈∈ Ak , j = 1, 2, . . . ,n , j ≠ i ,

and are required to satisfy

(2.8e)6
1w(xk)q1||z||2 ≤ zT Dkz ≤ 6 2w(xk)q2||z||2 , \/ z ∈∈ IRn ,

where 6 1 and 6 2 are positive scalars,q1 and q2 are non-negative integers andw(⋅) is defined in

(2.3a). It is easy to see that in the caseq1 = q2 = 0, with 6
1 ∈∈ (0, 1) and 6

2 ∈∈ (1,∞),

dk = − Dkgk will satisfy the conditions required by (2.5a,b,c).If we replace the constants4 1 and

4 2 by 4 1w(xk)q1 and 4 2w(xk)q2, respectively, in (2.5a,b,c), the search directionsdk = − Dkgk

satisfy these tests for all non-negative, integerq1 andq2.

Before proving convergence, we will show that the step-size rule is well defined and that the

stopping criterion in Step 1 of Algorithm Model PD is satisfied by a pointxk if and only if xk is a

stationary point.

- 77 - Chap. 3

Proposition 2.5. Let xk, dk be any iterate and corresponding search direction constructed by

Algorithm Model PD,i.e., dk satisfies the conditions in (2.5a,b,c).Then

(a) xk is a stationary point for problemP if and only if xk(7 , dk) = xk for all 7 ≥ 0;

(b) xk is a stationary point for problemP if and only if ||gk||I k
= 0 and xi

k = 0 for all i ∈∈ Ak;

(c) if xk is not a stationary point for problemP then there exists 7 > 0 such that

(2.9)f (xk(7 , dk)) − f (xk) ≤ 8

î
7 /

\ gk, dk
\
/ I k

− /
\ gk, xk − xk(7 , dk) \

/ Ak

, \/ 9 ∈∈ [0, 9) ,

i.e., the step-size rule (2.6a) is well defined atxk and will be satisfied with7 k ≥ min { : −M , :;7 } .

Proof.

(a) Suppose thatxk is a stationary point.Then (2.2b) implies thatgi
k = 0 for all i ∈∈ I k. Hence,

di
k = 0 for all i ∈∈ I k, since ||dk||I k

≤ < 2||gk||I k
. Hencexi

k(7 , dk) = [xi
k + 7 di

k]+ = x i
k for all 7 ≥ 0,

i ∈∈ I k. Now, if i ∈∈ Ak, thengi
k > 0 and, sincexk is stationary, it follows from (2.2b) thatxi

k = 0.

Hence for all i ∈∈ Ak, xi
k(7 , dk) = [− 7 mi

kgi
k]+ = 0 = x i

k for all 7 ≥ 0. Thus,

xk(7 , dk) = [xk]+ = xk for all 7 ≥ 0.

Next, suppose thatxk(7 , dk) = xk for all 7 ≥ 0. Then di
k = 0 if xi

k > 0 and di
k ≤ 0 if

xi
k = 0. Letthe index sets I1(xk), I2(xk) be defined by

(2.10a)I1(xk) =. { i ∈∈ I k | xi
k > 0} , I2(xk) =. { i ∈∈ I k | xi

k = 0 } ,

so that I k = I 1(xk) ∪ I2(xk). It follows from the above that if i ∈∈ I1(xk), then di
k = 0, and if

i ∈∈ I2(xk), thendi
k ≤ 0, and alsogi

k ≤ 0 (by definition ofI k sincexi
k = 0). Thus,

(2.10b)/
\ gk, dk

\
/ I k

= /
\ gk, dk

\
/ I1(xk) + /

\ gk, dk
\
/ I2(xk) = /

\ gk, dk
\
/ I2(xk) ≥ 0 .

But, from (2.5b), /
\ gk, dk

\
/ I k

≤ − < 1||gk||I 2
k
. Therefore, ||gk||I k

= 0 and hencegi
k = 0 for all i ∈∈ I k.

For i ∈∈ Ak, di
k = − mi

kgi
k < 0. Since xi

k(7 , dk) = x i
k, for all 7 ≥ 0, this implies thatxi

k = 0. Thus

we have that for all i ∈∈ I k, gi
k = 0 and for all i ∈∈ Ak, gi

k > 0 and xi
k = 0. Consequently, xk is a

stationary point.

(b) Suppose thatxk is a stationary point.If i ∈∈ Ak then, becausegi
k > 0 for all i ∈∈ Ak, it fol-

lows from (2.2b), thatxi
k = 0. If i ∈∈ I k, then either(i) xi

k > 0 in which case it follows directly

from (2.2b) thatgi
k = 0, or (ii) x i

k = 0 in which case, by definition (2.4b) ofI k =. I (xk), gi
k ≤ 0;

then, becausegi
k ≥ 0 by (2.2b), we must have gi

k = 0. To complete the proof, suppose that

||gk||I k
= 0 and xi

k = 0 for all i ∈∈ Ak. Then, sincexi
k ≥ 0 for all i ∈∈ I k and, sincegi

k > 0 for all

i ∈∈ Ak, it follows that (2.2b) holds for alli .

- 78 - Chap. 3

(c) Suppose thatxk is not a stationary point.Define the following index sets:

(2.11a)I3(xk) =. { i ∈∈ I k | xi
k > 0 , or (xi

k = 0 and di
k > 0) } ,

(2.11b)I4(xk) =. { i ∈∈ I k | xi
k = 0 , di

k ≤ 0 } ,

(2.11c)A1(xk) =. { i ∈∈ Ak | xi
k > 0} , A2(xk) =. { i ∈∈ Ak | xi

k = 0 } .

First note thatI3(xk) ∪ A1(xk) is not empty. To see this, suppose thati ∈∈ I4(xk) ∪ A2(xk) for

all i = 1, . . . ,n. Then xi
k = 0 and di

k ≤ 0 (sincedi
k = − mi

kgi
k < 0 for i ∈∈ A2(xk)) which implies

that xi
k(= , dk) = [xi

k + = di
k]+ = 0 = x i

k for all i . Consequently, by part (a) of this proposition,xk

must be a stationary point; this is a contradiction.Now, let

(2.12a)= 1 = sup { = | xi
k + = di

k ≥ 0 , i ∈∈ I3(xk) } ,

(2.12b)= 2 = sup { = | xi
k + = di

k ≥ 0 , i ∈∈ A1(xk) } .

Clearly = 1 > 0 (possibly infinite) and= 2 > 0. If I3(xk) is empty let = 1 = ∞ or, if A1(xk) is

empty, let = 2 = ∞. Now, if i ∈∈ I4(xk), xi
k(= , dk) = [= di

k]+ = 0 = x i
k for all = ≥ 0. Similarly, if

i ∈∈ A2(xk), xi
k(= , dk) = [− = mi

kgi
k]+ = 0 = x i

k for all = ≥ 0. Onthe other hand, ifi ∈∈ I3(xk) and

= ∈∈ [0, = 1), then xi
k(= , dk) = x i

k + = di
k and if i ∈∈ A1(xk) and = ∈∈ [0, = 2], then

xi
k(= , dk) = x i

k − = mi
kgi

k. Therefore, with

(2.13a)di
k =

î

di
k

0

if i ∈∈ I3(xk) ∪ A1(xk)

otherwise
, i = 1, . . . ,n ,

it follows that

(2.13b)xk(= , dk) = [xk + = dk]+ = xk + = dk , \/ > ∈∈ [0, min { > 1, = 2 }) .

Next, from (2.13a), we obtain

(2.14a)/
\ dk, gk

\
/ = /

\ dk, gk
\
/ I3(xk) + /

\ dk, gk
\
/ A1(xk) .

Now, from (2.5b), /
\ dk, gk

\
/ I k

= /
\ dk, gk

\
/ I3(xk) + /

\ dk, gk
\
/ I4(xk) ≤ − ? 1||gk||I 2

k
. But, for i ∈∈ I4(xk),

di
k ≤ 0 and gi

k ≤ 0, so /
\ dk, gk

\
/ I4(xk) ≥ 0. Thus, /

\ dk, gk
\
/ I3(xk) ≤ − ? 1||gk||I 2

k
. This, together with

(2.5a) and (2.14a), implies that

(2.14b)/
\ dk, gk

\
/ ≤ − ? 1||gk||2I k

− ? 1||gk||2A1(xk) .

Since xk is not a stationary point, there exists at least onei ∈∈ I k ∪ A1(xk) such thatgi
k ≠ 0.

Hence /
\ dk, gk

\
/ < 0, i.e. dk is a feasible descent direction.Next, it follows from (2.13b) that, for

all = ∈∈ [0, min { = 1, = 2 }) , the Armijo-like step-size rule in (2.6a) is equivalent to the following

requirement on= ,

- 79 - Chap. 3

(2.14c)f (xk + @ dk) − f (xk) ≤ AB@ /
\ gk, dk

\
/ Ak∪ I3(xk) + AC@ /

\ gk, dk
\
/ I4(xk) .

But for all i ∈∈ I4(xk), gi
k ≤ 0 and di

k ≤ 0. Thereforethe last term in the (2.14c) is non-negative.

Hence (2.14c) is satisfied if the following, harder, condition is satisfied,

(2.14d)f (xk + @ dk) − fk ≤ AC@ /
\ gk, dk

\
/ .

But this is the usual Armijo rule applied to an unconstrained problem which can always be satis-

fied with a positive step-size when/
\ gk, dk

\
/ < 0. Hence, there exists 0< @ ≤ min { @ 1, @ 2 } such

that (2.9) holds.

We will now show that Algorithm Model PD produces a sequence of iterates whose accu-

mulation points are stationary points.The following assumption will be used:

Assumption 2.6. The gradient∇ f (⋅) is Lipschitz continuous on bounded subsets of2 ; i.e.,

given any bounded setS ⊂ 2 , there exists a scalarL < ∞ such that

(2.15)||∇ f (x) − ∇ f (y)|| ≤ L||x − y|| , \/ x, y ∈∈ S .

Lemma 2.7. Suppose that the sequences{ xk } ∞
k=0 with xk ∈∈ 2 , { dk } ∞

k=0 with dk ∈∈ IRn, and

{ @ k } ∞
k=0 with @ k ∈∈ IR bounded and non-negative, are such that (2.5a,b,c) and (2.6a) are satisfied

by the triplet { xk, dk, @ k } f or all k. Then, for any x ∈∈ 2 that is not a stationary point, there

exists aD > 0 and aE > 0 (depending onx) such that

(2.16)f (xk(@ k, dk)) − f (xk) ≤ − E

for all k such thatxk ∈∈ B(x, D).

Proof. We will first show that there exists @ > 0, depending onx, such that @ k ≥ @ for all k

such thatxk is sufficiently close tox. We will then use this@ to derive D > 0 and E > 0 such that

(2.16) holds.Let S ⊂ 2 be a bounded neighborhood ofx. For any xk ∈∈ S, ∇ f (xk) is bounded

because it is a continuous function.By (2.5a,c)dk is also bounded.This implies thatxk(@ k, dk),

@ k ∈∈ [0, F −M], is bounded.Thus, by Assumption 2.6 we have that there exists anL < ∞ such

that fors ∈∈ [0, 1],

(2.17)||gk − ∇ f (xk − s[xk − xk(@ , dk)])||2 ≤ sL||xk − xk(@ , dk)|| , \/ xk ∈∈ S .

Expanding the left-hand side of (2.6a) we have, for xk ∈∈ S and @ ∈∈ [0, F −M],

- 80 - Chap. 3

f (xk(G , dk)) − f (xk) = /
\ gk, xk(G , dk) − xk

\
/

+ ∫
1

0
/
\ ∇ f (xk − s[xk − xk(G , dk)]) − gk, xk(G , dk) − xk

\
/ ds

≤ /
\ gk, xk(G , dk) − xk

\
/ + ||xk(G , dk) − xk||∫

1

0
sL||xk(G , dk) − xk|| ds

(2.18)= /
\ gk, xk(G , dk) − xk

\
/ +

L

2
||xk(G , dk) − xk||2 .

Now, for i ∈∈ Ak, xi
k(G , dk) = [xi

k − G mi
kgi

k]+ ≥ xi
k − G mi

kgi
k so that xi

k − xi
k(G , dk) ≤ G mi

kgi
k.

Thus,

(2.19)G
i ∈∈ Ak

Σ mi
kgi

k[xi
k − xi

k(G , dk)] ≥ ||xk − xk(G , dk)||2Ak
.

Now consider the setsI5,k =. { i ∈∈ I k | gi
k > 0} and I6,k =. { i ∈∈ I k | gi

k ≤ 0 } . I f i ∈∈ I5,k then

xi
k > H k (for otherwisei ∈∈ Ak). Since x̂ is not a stationary point, ||x − [x − ∇ f (x)]+|| > 0 (see

discussion of equation (2.3c)).Thus, sincew(⋅) is continuous andH (x) = min { H , w(x) } , there

exists I 1 > 0 and H > 0 such that(i) H (xk) ≥ H for all xk ∈∈ B(x, I 1) and (ii) B(x, I 1) ⊂ S. Let

∆ < ∞ be such that ||gk|| ≤ ∆ / J 1 for all xk ∈∈ B(x, I 1). Then,for all k such thatxk ∈∈ B(x, I 1),

we have from (2.5b) that |di
k| ≤ ∆ for all i ∈∈ I k. Hence, for G ∈∈ [0, H / ∆] and i ∈∈ I5,k,

xi
k(G , dk) = x i

k + G di
k and

(2.20a)
i ∈∈ I5,k

Σ gi
k[xi

k − xi
k(G , dk)] = − G /

\ gk, dk
\
/ I5,k

, \/ K ∈∈ [0, L / ∆] .

Next, for all G ≥ 0, xi
k − xi

k(G , dk) ≤ − G di
k, and sincegi

k ≤ 0 for i ∈∈ I6,k, we hav ethat

(2.20b)
i ∈∈ I6,k

Σ gi
k[xi

k − xi
k(G , dk)] ≥ − G /

\ gk, dk
\
/ I6,k

, \/ K ≥ 0 .

Combining these last two expressions gives us

(2.20c)/
\ gk, xk − xk(G , dk) \

/ I k
≥ − G /

\ gk, dk
\
/ i ∈∈ I k

, \/ K ∈∈ [0, L / ∆]

for all k such that xk ∈∈ B(x, I 1). Finally, from (2.5b,c) we have that

− /
\ dk, gk

\
/ I k

≥ J 1||gk||2I k
≥ M 1

M 2
2

||dk||2I k
, and since, for any i ∈∈ { 1, . . . ,n } and all G ≥ 0,

|xi
k − xi

k(G)| ≤ G |di
k|, we have that

(2.21)||xk − xk(G , dk)||2I k
≤ G 2||dk||2I k

≤ − G 2 J 2
2

J 1

/
\ dk, gk

\
/ I k

.

Thus, from (2.20c), we see that, for allxk ∈∈ B(x, I 1),

- 81 - Chap. 3

/
\ gk, xk(N , dk) − xk

\
/ = − /

\ gk, xk − xk(N , dk) \
/ Ak

− /
\ gk, xk − xk(N , dk) \

/ I k

(2.22a)≤ − /
\ gk, xk − xk(N , dk) \

/ Ak
+ N /

\ gk, dk
\
/ I k

,

and, from (2.19) and (2.21),

L

2
||xk(N , dk) − xk|| =

L

2
||xk(N , dk) − xk||2Ak

+
L

2
||xk(N) − xk||2I k

(2.22b)≤
NPO 2L

2
/
\ gk, xk − xk(N , dk) \

/ Ak
− N 2 O 2

2 L

2O 1

/
\ gk, dk

\
/ I k

, \/ Q ∈∈ [0, R / ∆] .

Substituting the expressions (2.22a,b) into (2.18), we obtain that for allN ∈∈ [0, S / ∆] and

xk ∈∈ B(x, T 1),

(2.23)f (xk(N , dk)) − f (xk) ≤ N (1 − N O
2
2 L

2O 1
) /

\ gk, dk
\
/ I k

+ (NPO 2L

2
− 1) /

\ gk, xk − xk(N , dk) \
/ Ak

.

Comparing this with (2.6a), and noting from (2.5b) and (2.7) that/
\ gk, dk

\
/ I k

≤ 0 and
/
\ gk, xk − xk(N , dk) \

/ Ak
≥ 0, we see that the Armijo-like rule is satisfied for any N ≥ 0 such that

N ≤ S / ∆, N − N 2L O 2
2 / 2O 1 ≥ UCN and NPO 2L / 2−1 ≤ − U . Since V ∈∈ (0, 1) and the step-size rule

requires the smallestm such thatN = V m satisfies (2.6a), we see that for allxk ∈∈ B(x, T 1),

(2.24)N k ≥ N =. min

î

S
∆

,
2O 1(1 − U)

O 2
2 L

, V −M

> 0 .

Now we will use (2.24) to show that (2.16) holds.For any i ∈∈ I k,

(2.25a)/
\ gk, dk

\
/ I k

≤ − O 1||gk||2I k
≤ − O 1(gi

k)2 .

Also, for all i ∈∈ Ak, gi
k > 0 andxi

k − xi
k(N k, di

k) ≥ 0. Thus,for any i ∈∈ Ak, xk ∈∈ B(x, T 1),

/
\ gk, xk − xk(N k, dk) \

/ Ak
≥ gi

k(xi
k − xi

k(N k, dk))

≥ gi
k(xi

k − xi
k(N , dk))

(2.25b)≥ (gi
k) min { xi

k, N / mi
kgi

k } = min { gi
k xi

k, N / mi
k } ,

where N is given by (2.24). Let g =. ∇ f (x). Since x is not stationary, there must exist an

i0 ∈∈ { 1, . . . ,n } such that either(i) gi0 < 0 or (ii) x i0 > 0 and gi0 ≠ 0. By continuity of ∇ f (⋅),

there exist T 2 ∈∈ (0, T 1] such that

(2.25c)1
2 |gi0| ≤ |gi0

k | ≤ 2|gi0| , \/ xk ∈∈ B(x, T 2) .

Thus, if xi0 = 0, then gi0 < 0 and, for all xk ∈∈ B(x, T 2), gi0
k < 0. Hence, i0 ∈∈ I k and, by

(2.25a,c),

- 82 - Chap. 3

(2.26a)/
\ gk, dk

\
/ I k

≤ − W 1(gi0)2 / 4 =. − X 1.

If xi0 > 0, then we must have gi0 > 0. Thus, from (2.25c), ifxk ∈∈ B(x, Y 2) then i0 ∈∈ Ak. So, if

xi0 > 0, then for allk ∈∈ K such that ||xk − x|| ≤ min { Y 2, xi0/2 } , we have from (2.25b,c),

(2.26b)− /
\ gk, xk − xk(Z k, dk) \

/ Ak
≤ −min { gi0 xi0 / 4, Z / mi0

k } =. − X 2 .

Now, from (2.6a) and (2.16), we have

(2.27)f (xk+1) − f (xk) ≤ f (xk(Z k, dk)) − f (xk) ≤ [{ Z k
/
\ gk, dk

\
/ I k

− /
\ gk, xk − xk(Z k, dk) \

/ Ak
} .

Since it is always the case that/\ gk, dk
\
/ I k

≤ − W 1||gk||2I k
≤ 0 and − /

\ gk, xk − xk(Z k, dk) \
/ Ak

≤ 0, we

have from (2.26a,b) and (2.27), that

(2.28)f (xk+1) − f (xk) ≤ − X < 0 , \/ xk ∈∈ B(x, Y) , k ∈∈ K ,

whereX = [\X 1 andY = Y 2 > 0 if xi0 = 0 or X = []X 2 andY = min { Y 2, xi0/2 } > 0 if xi0 > 0.

Theorem 2.8. Suppose that Assumption 2.6 holds.Let { xk } ∞
k=0 with xk ∈∈ 2 , { dk } ∞

k=0 with

dk ∈∈ IRn, and { Z k } ∞
k=0 with Z k ∈∈ IR bounded and non-negative, be sequences such that, for all

k, (2.5a,b,c) and (2.6a) are satisfied by the triplet{ xk, dk, Z k } and

(2.29)f (xk+1) ≤ f (xk(Z k, dk)) .

Then any accumulation point,x̂, of { xk } ∞
k=0 is a stationary point of problemP.

Proof. We will prove this result be contradiction.Suppose thatx̂ is an accumulation point of

{ xk } ∞
k=0. Then there exists an infinite setK ⊂ IN such that limk ∈∈ K xk = x̂ . By continuity of

f (⋅), this implies that limk ∈∈ K f (xk) = f (x̂). Additionally, for each k ∈∈ IN,

f (xk+1) ≤ f (xk(Z k, dk) ≤ f (xk) since the right hand side of (2.6a) is non-positive (cf. Remark

2.2). Hence,f (xk) → f (x̂) and, therefore,

(2.30)f (xk) − f (xk+1) → 0 as k → ∞ .

Now, to establish the contradiction, suppose thatx̂ is not a stationary point.Then, by (2.29) and

Lemma 2.7, there exists Yˆ > 0 and X̂ > 0 such that f (xk) − f (xk+1) ≥ f (xk) − f (xk(Z k, dk)) ≥ X̂
for all xk ∈∈ B(x̂, Yˆ). But this contradicts (2.30).Thereforex̂ must be a stationary point.

Corollary 2.9. Suppose that Assumption 2.6 holds.If { xk }
k f

k=0 is a finite sequence generated

by Algorithm Model PD, thenxk f
is a stationary point of problemP. If { xk } ∞

k=0 is an infinite

sequence generated by Algorithm Model PD, then every accumulation point of{ xk } ∞
k=0 is a sta-

tionary point of problemP.

Proof. First suppose{ xk }
k f

k=0 is a finite sequence.Then by Proposition 2.5(b), xk f
is a

- 83 - Chap. 3

stationary point.If { xk } ∞
k=0 is an infinite sequence then, by Theorem 2.8 (we have, trivially,

f (xk+1) = f (xk(^ k, dk)), every accumulation point is a stationary point.

Next, we proceed towards a proof that under suitable conditions, after a finite number of

iterations, Algorithm Model PD reverts to an unconstrained optimization algorithm on the sub-

space defined by the non-binding variables at a strict local minimizer limit point.Let _ (x) denote

the set of all binding constraints atx, i.e.

(2.31)_ (x) =. { i | xi = 0 }

(this _ (x) should not be confused withB(x, `), the closed ball of radius` aroundx). We will use

the following alternative statement of the standard second order sufficiency condition with strict

complementary slackness for a stationary pointx̂ to be a strict local minimizer for a problemP

with f (⋅) twice continuously differentiable†:

(2.32a)zT ∇ 2 f (x̂)z > 0 , \/ z ∈∈ { z ∈∈ IRn | zi = 0 , \/ i ∈∈ a (x̂) } ,

and

(2.32b)∂ f (x̂)

∂xi
> 0 , \/ i ∈∈ a (x̂) .

Theorem 2.10. Suppose f (⋅) is twice continuously differentiable. Considera sequence

{ xk } ∞
k=0 produced by Algorithm Model PD.If { xk } ∞

k=0 has an accumulation pointx̂ such that

(2.32a,b) hold, thenxk → x̂ and there exists anN < ∞ such that

(2.33)Ak = _ (xk) = _ (x̂) , \/ k ≥ N + 1 .

Proof. Since f (⋅) is twice continuously differentiable, Assumption 2.6 holds.Thus, by Corol-

lary 2.9, x̂ is a stationary point.It therefore follows from (2.2b) and the definition ofw(x) in

(2.3a) that w(x̂) = 0. Hence,becausew(⋅) is continuous, there exists a ` 1 > 0 such that
b (x) =. min { b , w(x) } = w(x) for all x ∈∈ B(x̂, ` 1). Now, since (i) xi , i ∈∈ _ (x̂), is arbitrarily

close to zero ifx sufficiently close tox̂, and (ii) g(⋅) =. ∇ f (⋅) is continuous, and thus by (2.32b),

bounded away from zero forx sufficiently close tox̂, we hav ethat for x sufficiently close tox̂,

gi (x) ≥ xi for all i ∈∈ _ (x̂). Thus,there exists ` 2 ∈∈ (0, ` 1] such that for allx ∈∈ B(x̂, ` 2)

(2.34a)[xi − gi (x)]+ = 0 , \/ i ∈∈ B(x̂)

† See, for example, [88,pp. 316-317]:viz., equation (2.2b) holds, the Hessian of the LagrangianL(x) =. f (x) − c T x is positive

definite on the subspace{ z ∈∈ IRn | zi = 0 , i ∈∈ d (x̂) } and the multipliersc i = ∂ f (x̂) / ∂xi are positive for all i ∈∈ d (x̂) and zero for

all i /∈ d (x̂).

- 84 - Chap. 3

(2.34b)gi (x) > 0 , \/ i ∈∈ B(x̂) .

From (2.34a) it follows that forx ∈∈ B(x̂, e 2),

(2.35a)
f 2(x) = w2(x) = ||x − [x − g(x)]+||2 =

i ∈∈ g (x̂)
Σ (xi)2 +

i /∈ g (x̂)
Σ (xi − [xi − gi]+)2 ≥

i ∈∈ g (x̂)
Σ (xi)2 ,

and hence,

(2.35b)xi ≤ f (x) , \/ i ∈∈ B(x̂) and x ∈∈ B(x̂, e 2) .

Also, since (x̂)i > 0 for all i /∈ B(x̂) and f (x̂) = w(x̂) = 0, there exist scalars f ∼ > 0 and

e 3 ∈∈ (0, e 2] such that

(2.35c)xi ≥ f ∼ > f (x) , \/ i /∈ a (x̂) and x ∈∈ B(x̂, e 3) .

Thus, we see from (2.34b), (2.35b), (2.35c) and the definition ofA(x) giv en in (2.4a), that

(2.36)A(x) = B(x̂) , \/ x ∈∈ B(x̂ , e 3) .

To establish the next point, we need to assert that there exists h > 0 such that h k ≥ h for all

k such thatxk ∈∈ B(x̂, e 3). We cannot directly use (2.24) in the proof of Lemma 2.7 because that

quantity was derived by assuming, in the derivation of equation (2.20a), thatx̂ was not a station-

ary point. However, from (2.35c) and (2.36), we know that if xk ∈∈ B(x̂, e 3) then xi
k > f ∼ for

i ∈∈ I k. We can therefore usef ∼ for equation (2.20a) in lieu of thef . Thus, h k ≥ h for all k such

that xk ∈∈ B(x̂, e 3), whereh is defined in (2.24) withf replaced byf ∼ . Now for any k, i such that

xk ∈∈ B(x̂, e 3) and i ∈∈ Ak we have di
k = − mi

kgi
k < 0, xi

k ≤ f (xk) and by (2.36),i ∈∈ _ (x̂). Thus,

from (2.32b), the continuity of∇ f (⋅) and the fact thath k ≥ h for all k, there exists ae 4 ∈∈ (0, e 3]

such that for any i ∈∈ Ak and xk ∈∈ B(x̂, e 4), 0 ≤ xi
k+1 = [xi

k − h kmi
kgi

k]+ ≤ [xi
k − h mi

kgi
k]+ = 0.

This implies thati ∈∈ _ (xk+1). Hence,

(2.37)Ak ⊂ _ (xk+1) , \/ xk ∈∈ B(x̂, e 4) .

On the other hand, for any k, i such thatxk ∈∈ B(x̂, e 4) and i /∈ Ak, we hav e from (2.36) that

i /∈ _ (x̂) and hence, by (2.35c),xi
k > f ∼ . Since x̂ is a stationary point, we see from (2.2b) that

∂ f (x̂) / ∂xi = 0 for all i /∈ _ (x̂). Also, h k is bounded, f (⋅) is continuous, and by (2.5c),

||dk||I k
< i 2||gk||I k

. Therefore, since

||xk+1 − xk|| ≤ ||xk+1 − xk||Ak
+ ||xk+1 − xk||I k

≤ f (xk) + i 2||gk||I k
is arbitrarily small for xk suffi-

ciently close tox̂, there exists e 5 ∈∈ (0, e 4] such that ifxk ∈∈ B(x̂, e 5), then(i) xk+1 ∈∈ B(x̂, e 4)

and(ii) x i
k+1 > f (xk+1) for i /∈ Ak. It follows from (i) and (2.36) thatAk = Ak+1 = _ (x̂). From

(ii) it follows that i /∈ Ak implies that i /∈ _ (xk+1) and hence, _ (xk+1) ⊂ Ak. These facts

together with (2.37) allow us to conclude that

- 85 - Chap. 3

(2.38)_ (xk+1) = Ak+1 = Ak = _ (x̂) , \/ xk ∈∈ B(x̂, j 5) .

Hence, the (k + 1)-th iteration is equivalent to an unconstrained minimization on the subspace

{ x ∈∈ IRn | xi = 0 for i ∈∈ _ (x̂) } . Therefore, since (2.5c) and (2.32a) hold and sincex̂ is a sta-

tionary point, we can invoke Proposition 1.12 in[89] which states that there exists an open set

N(x̂) containing x̂ such thatN(x̂) ⊂ B(x̂, j 5) and with the property that for any k such that

xk+1 ∈∈ N(x̂) and _ (xk+1) = _ (x̂), xk+2 ∈∈ N(x̂) and, by (2.38),_ (xk+2) = _ (x̂). By continuing

in this manner, we can conclude that if there is anN such thatxN+1 ∈∈ N(x̂) and _ (xN+1) = _ (x̂),

then xk ∈∈ N(x̂) and _ (xk) = _ (x̂) for all k ≥ N + 1. We show that such anN exists as follows.

Using the same arguments that led up to (2.38), there exists j 6 ∈∈ (0, j 5] such that if

xk ∈∈ B(x̂, j 6) then xk+1 ∈∈ N(x̂) ⊂ B(x̂, j 5) and, by (2.38), _ (xk+1) = _ (x̂). Since x̂ is an

accumulation point, there exists N < ∞ such that xN ∈∈ B(x̂, j 6). Thus, xN+1 ∈∈ N(x̂) and

_ (xN+1) = _ (x̂) and thereforexk ∈∈ N(x̂) and _ (xk) = _ (x̂) for all k ≥ N + 1. Thisallows us to

conclude, also using Proposition 1.12 in[89], thatxk → x̂.

It follows from Theorem 2.10 that, under the conditions stated, Algorithm Model PD will

identify the constrained components of the solutionx̂ after a finite number of iterationsN.

Hence, for allk ≥ N +1, xi
k = 0 if i ∈∈ _ (x̂) and xi

k > 0 if i /∈ _ (x̂). Consequently, for all

k ≥ N +1, Algorithm Model PD reduces to an unconstrained optimization algorithm on the sub-

space {x ∈∈ IRn | xi = 0 , \/ i ∈∈ a (x̂) } and its rate of convergence is governed entirely by the

rules used in the construction of the componentsdi
k, i ∈∈ I k, of the search direction.

The use of other step-siz e rules.

Typically, the unconstrained portion,di
k, i ∈∈ I k, of the search direction required by Algorithm

Model PD is constructed from a standard method such as the conjugate gradient method or a vari-

able metric method (we demonstrate this construction in Section 3).Depending on the method

used to construct the unconstrained direction, it may be useful to require the step-size to satisfy a

stronger condition than the Armijo rule.For instance, the conjugacy of search directions pro-

duced by a conjugate gradient algorithm depends strongly on the accuracy of the line search and,

therefore, it is usually more efficient to use a step-size that provides a more accurate line mini-

mization than the Armijo step-size.

In order to incorporate a more accurate line search method into Algorithm Model PD, we

propose the following modification which preserves the results of Theorem 2.10.

- 86 - Chap. 3

Modified Step-size Procedure: Let k 3 ∈∈ (0, 1] and k 4 ∈∈ (0,∞) be giv en. At iteration k of

Algorithm Model PD, let l k be the Armijo step-size satisfying (2.6a) and letl ′k ∈∈ [0, k 4] be

another step-size.If l ′k ≥ k 3 l k, then setx∼ = xk(l ′k, dk). Otherwise,set

(2.39)x∼ i =

î

xi
k(l ′k, dk)

xi
k(k 3 l k, dk)

if i ∈∈ I k

if i ∈∈ Ak
.

If f (x∼) ≤ f (xk(l k, dk)) then setxk+1 = x∼ . Otherwise, setxk+1 = xk(l k, dk).

Proposition 2.11. Suppose f (⋅) is twice continuously differentiable. Considera sequence

{ xk } ∞
k=0 produced by Algorithm Model PD using the Modified Step-size Procedure.If

{ xk } ∞
k=0 has an accumulation pointx̂ that satisfies the second order sufficiency conditions

(2.32a,b), thenxk → x̂ and there exists anN < ∞ such that

(2.40)Ak = _ (xk) = _ (x̂) , \/ k ≥ N + 1 .

Proof. Let { xk } ∞
k=0 be a sequence of iterates produced by Algorithm Model PD using the

Modified Step-size Procedure.First, by constructionf (xk+1) ≤ f (xk(l k, dk)) for all k. There-

fore, by Theorem 2.8, any accumulation point,x̂, of { xk } ∞
k=0 must be a stationary point of prob-

lem P. This being the case, Proposition 2.11 follows from the proof of Theorem 2.10 with the

following modification. In deriving (2.37), we used the fact that l k ≥ l > 0 for all k such that

xk ∈∈ B(x̂, m 3). However, the new step-size,l ′k, may not be bounded away from zero.Nonethe-

less, we can show that (2.37) still holds.First, if f (x∼) > f (xk(l k, dk)) then xk+1 = xk(l k, dk).

Clearly then, (2.37) holds sincexk+1 is determined from the unmodified step-size rule in Algo-

rithm Model PD as in Theorem 2.10.If, on the other hand,f (x∼) ≤ f (xk(l k, dk)), then by con-

struction ofx∼ we have, for all i ∈∈ Ak, that xi
k+1 = x∼ i ≤ [xi

k − k 3 l kgi
k]+ ≤ [xi

k − k 3 l gi
k]+. Now,

by (2.36), the continuity of∇ f (⋅) and the fact that∂ f (x̂) / ∂xi > 0 for all i ∈∈ _ (x̂), there exists

m 4 ∈∈ (0, m 3] such that [xi
k − k 3 l gi

k]+ = 0 for all i ∈∈ Ak and xk ∈∈ B(x̂, m 4). Thus, if

xk ∈∈ B(x̂, m 4) and i ∈∈ Ak, then xi
k+1 = 0 and, hence,i ∈∈ _ (xk+1). So,again, (2.37) holds.The

rest of the proof of Theorem 2.10 holds without further modification.

The important aspect of the Modified Step-size Procedure is that once the active constraint

set is identified and those variables in the active set are at their bounds,

xi
k(l k, dk) = x i

k(l ′k, dk) = 0, for all i ∈∈ Ak. Therefore, x∼ = xk(l k ′, dk) and the algorithm

behaves as an unconstrained algorithm using the step-sizel ′k (so long as

f (xk(l ′k, dk) ≤ f (xk(l k, dk))). Thisfact can used to obtain the properties associated with almost

any step-size procedure.For instance, consider thestrong Wolfe criterion:

- 87 - Chap. 3

(2.41a)f (xk + n kdk) − f (xk) ≤ n 1 o k
/
\ gk, dk

\
/

(2.41b)| /
\ ∇ f (xk + o kdk), dk

\
/ | ≤ − n 2

/
\ gk, dk

\
/ ,

with 0 < n 1 < n 2 < 1
2. This step-size rule can be implemented in Algorithm Model PD using the

Modified Step-size Procedure by requiringo ′k to satisfy

(2.41c)f (xk(o ′k, dk)) − f (xk) ≤ n 1

î
o ′k /

\ gk, dk
\
/ I k

− /
\ gk, xk − xk(o ′k, dk) \

/ Ak

.

and

(2.41d)| /
\ ∇ f (xk(o ′k, dk)), dk

\
/ I k

| ≤ − n 2
/
\ gk, dk

\
/ I k

.

Then, by Proposition 2.11, Algorithm Model PD reverts to an unconstrained minimization over

the subspace{ i | xi
k /∈ _ (x̂) } i n a finite number of iterations and, therefore, conditions (2.41c,d)

become equivalent to conditions (2.41a,b).

The usefulness of Proposition 2.11 is demonstrated in our next result which deals with the

rate of convergence of an implementation of Algorithm Model PD that uses the Polak-Ribie`re

conjugate gradient rule to construct the componentsdi
k, i ∈∈ I k, of the search directiondk. Corol-

lary 2.12 states that Algorithm Model PD with the Modified Step-size procedure using exact line

searches, with search directionsdk given by (2.45a,b,c) and restarts imposed every m + 1 itera-

tions, has iterates that converge (m + 1)-step linearly with a root rate constant that depends on

only the smallestn − r − m eigenvalues of the Hessian at the solution restricted to the uncon-

strained subspace.Here,r = | _ (x̂)| is the number of constraints binding at the solution.Since it

follows from the interlacing eigenvalue property of symmetric matrices[72, Cor. 8.1.4] that the

condition of the restricted Hessian is no worse than that of the Hessian itself, the presence of

bounds on the decision variables can only serve to reduce the convergence rate constant.For

problems that include penalty functions, ifm is taken to be the number of penalized constraints

then Corollary 2.12 shows that the (m + 1)-step convergence root rate constant is independent of

the size of the penalty constant (see[90]).

Corollary 2.12. Suppose that

(a) in problemP, f (⋅) is three times continuously differentiable with positive definite Hessian

H(x) on 2 and that x̂, the unique global minimizer ofP, satisfies the sufficient conditions

(2.32a,b)†, and that _ (x̂) =. { n− r +1, . . . ,n } , with 1 ≤ r ≤ n (achieved by renumbering the

† The convexity of the constraint set and the strict convexity of the objective function guarantees thatP has a unique global
minimizer.

- 88 - Chap. 3

variables, if necessary).

(b) { xk } i s a sequence produced by Algorithm Model PD using the Modified Step-size Proce-

dure with search directionsdk determined as follows (with d−1 = 0 ∈∈ IRn):

(2.42a)d
∼ i

k = − gi
k + p kdi

k−1 , i ∈∈ I k , where p k = p PR
k =.

/
\ gk, gk − gk−1

\
/ I k

||gk−1||2I k

,

(2.42b)di
k =

î

d
∼ i

k

−gi
k

if /
\ d
∼

k, gk
\
/ I k

≤ − q 1||gk||2I k
and ||d

∼
k||I k

≤ q 2||gk||I k

otherwise
, \/ i ∈∈ I k ,

(2.42c)di
k = − mi

kgi
k , q 1 ≤ mi

k ≤ q 2 , \/ i ∈∈ Ak ,

and with the step-sizer ′k determined by an exact line search, and with restarts (di
k = − gi

k for

i ∈∈ I k) imposed every m + 1 ≤ n− r iterations.

Let H1,1(x̂) denote the upper-left (n − r) × (n − r) diagonal block ofH(x̂), and leta denote

its minimum eigenvalue andb its (m + 1)-th largest ((n − m − r)-th smallest) eigenvalue. If, in

Algorithm Model PD, q 2 ≥ 1 + b / a, then for any s > 0 there exists N < ∞ such that for all

k ≥ N / (m+1),

(2.43)||x(k+n)(m+1) − x̂|| ≤ ck

b − a

b + a
+ s

n

, n = 0, 1, 2, . . .

whereck is a bounded constant.

Proof. By Proposition 2.11, there exists N1 < ∞ such that for allk ≥ N1 +1, _ (xk) = _ (x̂), i.e.,

for all k ≥ N1 +1, xi
k = 0 for i ∈∈ _ (x̂) and for all i /∈ _ (x̂), di

k is determined by equations

(2.42a,b). Furthermore,it can be shown (see[2], equations 2.64, 2.65 and 2.66) that with the

choice for q 2 given in the Corollary statement the tests in (2.42b) will not fail for k ≥ N1 +1.

Thus, the search directiond
∼

k = (d1
k

. . .dr
k), k ≥ N1 +1, is determined by the unconstrained, par-

tial conjugate gradient method, with restarts every m+1 iterations, applied to the unconstrained

subspace {x ∈∈ IRn | xi = 0 , i ∈∈ _ (x̂) } . I t follows from Corollary 5.1 in[90] that there exists a

finite N ≥ N1 + 1 such that (2.43) holds.

Remark 2.13. If exact line searches were not used in the implementation of the conjugate gra-

dient method given in Corollary 2.12, the tests in (2.42b) would provide an automatic restarting

mechanism. Itis possible to avoid restarts altogether (after a finite number of iterations) even

without using exact line minimization if the search directiondi
k, i ∈∈ I k, in (2.42a,b) are con-

structed using the Fletcher-Reeves conjugate gradient method (p k = p FR
k =. ||gk||2I k

/ ||gk−1||2I k
), or

using the Polak-Ribie`re modified so thatp k = p PR
k if |p PR

k | ≤ |p FR
k | and p k = p FR

k if |p PR
k | > |p FR

k |.

- 89 - Chap. 3

To achieve this the Modified Step-size Procedure must be used witht ′k satisfying the strong

Wolfe conditions given by (2.41c,d). Proposition2.11 shows that Algorithm Model PD using the

Modified Step-size Procedure reverts to an unconstrained minimization after a finite number of

iterations and, for the remaining iterations,xi
k+1 = x i

k + t ′kdi
k, i /∈ _ (x̂). For these iterations, the

results in[91] show that the tests in (2.5b,c) will always be satisfied ifu 1 = 1−2v 2
1−v 2

and u 2 = 1
1−v 2

.

Extension to upper and lo wer bounds. Algorithm Model PD can easily be extended to deal

with upper and lower bounds of the formbi
l ≤ xi ≤ bi

u, i = 1, . . . ,n. Merely replace the projec-

tion operator [⋅]+ with the projection operator [⋅]#, defined forz ∈∈ IRn andi = 1, . . . ,n, by

(2.44)[z] i
=.

î

bi
l

zi

bi
u

if zi ≤ bi
l ,

if bi
l < zi < bi

u ,

if zi ≥ bi
u ,

define the feasible set as2 =. { x ∈∈ IRn | bi
l ≤ xi ≤ bi

u , i = 1, . . . ,n } and setAk = A(xk) where,

for x ∈∈ 2 ,

(2.45)A(xk) =. { i | bi
l ≤ xi

k ≤ bi
l + w (xk) and gi

k > 0 , or bi
u − w (xk) ≤ xi

k ≤ bi
u andgi

k < 0} .

The setI k is defined, as before, as the complement ofAk in { 1, 2, . . . ,n } .

3.3 COMPUTATIONAL RESULTS

One source of large-scale optimization problems is discretizations of optimal control prob-

lems. An optimal control problem can be discretized by replacing the differential equations

describing the system dynamics with a system of difference equations that describes some inte-

gration algorithm applied to the differential equations, and by replacing the infinite dimensional

function space of controls with a finite dimensional subspace of parameterized controls.The

result is a standard nonlinear programming problem whose decision variables are the control

parameters. Thenumber of decision variables in the nonlinear program is equal to the dimension

of the approximating control subspace.For optimal control problems with control bounds, the

nonlinear program is in the form of problemP and is suitable for solution by Algorithm Model

PD.

We used Algorithm Model PD to solve a discretization of the following optimal control

problem:

- 90 - Chap. 3

u ∈∈ L2[0,2.5]
minimize

Cx2

1(2. 5)+ ∫
2.5

0
x2

1(t) + u2(t) dt
OCP

subject to
ẋ1(t) = x2(t) ; x1(0) = − 5 ,

ẋ2(t) = − x1(t) + [1. 4 − 0. 14x2
2(t)]x2(t) + 4u(t) ; x2(0) = − 5 .

u(t) ≥ −4|t − 1. 5|, \/ t ∈∈ [0, 2. 5] ,

with C ≥ 0 a parameter.

The discretization was carried out using a second order Runge-Kutta method (the explicit

trapezoidal rule) withu(⋅) restricted to the subspace of continuous, piecewise linear functions.

Specifically, the decision variables for the discretized problem areu = (u0, u1, . . . ,un−1) ∈∈ IRn

whereui = u(ti) are the values ofu(⋅) at the breakpointsti = i (2. 5/1000),i = 0, . . . , 1000.Thus

n = 1001. Theuse of Runge-Kutta integration for discretization of optimal control problems is

described in detail in Chapter 2.We utilized the natural coordinate transformation, given by

(2.7.19c), associated with this discretization in order to prevent unnecessary ill-conditioning.For

this case, the transformation is given by u∼ = M
1
2
Nu where, due to continuity imposed at the break-

pointstk, M N is ann× n diagonal matrix with diagonal(M) = [1
2 1 1 . . . 1 1 1

2] / N†.

In addition to the coordinate transformation required by the theory of consistent approxima-

tions, we also pre-scale the problem by multiplyingf (⋅) by the factor x , wherex is defined as fol-

lows:

(3.1a)S = (1+ ||u0||∞) / (100||g0||∞)

(3.1b)
y

u = [u0 − Sg0]# ,

(3.1c)x =
1

2

/
\
y

u,
y

u \
/ I0

f (u0 +
y

u) − f (u0) − /
\ g0,

y
u \

/ I0

,

with [⋅]# as given by (2.44). Thispre-scaling makes it likely that a step-size of one is accepted in

the first iteration of the algorithm (x is the distance along the projected steepest descent direction,
y

u, to the minimum of a quadratic fit tof (⋅)) and it acts as a normalization on the problem so that

the tests in (2.5a,b,c) and the numerical termination criterion are less scale sensitive.

† Other coordinate transformations are also sometimes useful.For example, a coordinate transformation for use with the conju-
gate gradient method applied to optimal control problems with a special structure is discussed, and shown to be extremely effective,
in [92]. Another possibility is to use the inverse of the diagonal of the Hessian.This matrix can be efficiently computed using a recur-
sive algorithm similar to the one described in[93]. However, our experience indicates that this is not effective for optimal control
problems discretized as described above.

- 91 - Chap. 3

For purposes of comparison, we solved the discretized optimal control problem with a pro-

jected steepest descent algorithm, a projected conjugate gradient method and a projected version

of the limited memory quasi-Newton algorithm (L-BFGS) presented in[86,94].

The projected steepest descent algorithm uses the search directionsdk = − gk.

For the projected conjugate gradient method we used the search directions given in equa-

tions (2.42a,b,c) withmi
k = 1 for all i ∈∈ Ak, z 1 = 0. 2and z 2 = 10. Aftercomputing a step-size

{
k that satisfies the Armijo-like rule in (2.6a), we construct a quadratic approximationq(

{
) to

f (uk(
{
, dk)) such thatq(0) = f (uk), q′(0) = gk and q(

{
k) = f (uk(

{
k, dk)) and set

{ ′k equal to

the minimizer of this quadratic.We used this
{ ′k in the Modified Step-size Procedure with

z 3 = 1 and z 4 = | −M (the same upper bound as for
{

k). Thisprocedure requires one extra func-

tion evaluation per iteration.

The L-BFGS algorithm computes an approximationGk to the inverse of the Hessian based

on a limited number of applications of the BFGS quasi-Newton update formula.At each itera-

tion, the algorithm uses vectorssk =. uk − uk−1 andyk =. gk − gk−1 stored over a fixed number of

previous iterations.The procedure is as follows: Let m̂ = min { k, m−1 } . Then, at iterationk,

Gk is computed fromm̂ +1 BFGS updates applied to a starting estimateG0
k of the inverse Hes-

sian (which can be different at each iteration) according to

Gk+1 = (VT
k

. . . VT
k−m̂

) G0
k (V

k−m̂
. . . Vk)

+ }
k−m̂

(VT
k

. . . VT
k−m̂+1

) s
k−m̂

sT
k−m̂

(V
k−m̂+1

. . . Vk)

+ }
k−m̂+1

(VT
k

. . . VT
k−m̂+2

) s
k−m̂+1

sT
k−m̂+1

(V
k−m̂+2

. . . Vk)

...
(3.2)+ } ksksT

k ,

where } k = 1/ (yT
k sk), Vk = I − } k yksT

k . Here we useI (without any subscript) to denote the

n × n identity matrix. As in[94], we letG0
k = I in the first iteration and during restarts, and on

other iterations we letG0
k = ~ k I where~ k = /

\ yk, sk
\
/ I k

/ ||yk||2I k
is a self-scaling term demonstrated

in [95] to markedly improve the performance of quasi-Newton algorithms.An efficient, recursive

procedure for computingdk = − Gkgk without explicitly forming any matrices is given in [86].

The L-BFGS algorithm has proven to be quite effective [96]. We used this algorithm, with

m = 12, to compute the search directionsdi
k, i ∈∈ I k, in the unconstrained subspace.This is

accomplished by saving the full vectorssk andyk but restricting the inner product calculations in

the recursive algorithm of[86] to the current estimate,I k, of the unconstrained subspace.In

(2.5a), we chosemi
k = ~ k for all i ∈∈ Ak. We also added the following tests:

- 92 - Chap. 3

(i) If /
\ yk, sk

\
/ I k

< 0. 001||gk||2I k
, set � k = 1 and do not use current informationyk and sk for

Hessian updates.

(ii) Restart if /
\ dk, gk

\
/ I k

> −0. 2� k ||gk||2I k
,

(iii) Restart if ||dk||2I k
> 1000� 2

k ||gk||2I k
,

The first test ensures that the Hessian estimate is positive definite. With the tests(ii) and(iii) , the

search directiondk satisfies the conditions in (2.5a,b,c) for some� 1 ∈∈ (0, 1) and � 2 ∈∈ (1,∞) if

we restrict the magnitude of� k so that

(3.3a)0. 2� k ≥ � 1

and

(3.3b)√ 1000� k ≤ � 2 .

Therefore, with this restriction, algorithm PD with L-BFGS search directions is convergent. In

our implementation, we have � 1 = 0. 2× 10−3 and � 2 = √ 1000× 103.

The remaining data required by Algorithm Model PD were chosen as follows: � = 1 / 2,
�

= 3 / 5, M = 20, ui
0 = 0 for i = 1, . . . ,n, and � = 0. 2 except, for the projected L-BFGS

method,� = 1 / 3 was used to ensure that a step-size of 1 could be accepted close to a solution.

The termination test in Step 1 of Algorithm Model PD was considered satisfied when

(i) ||gk||I k
/ |I k| < � 2/3

mach(1 + | f (uk)|) ,

(ii) f (uk) − f (uk−1) < 10� mach(1 + | f (uk)|) ,

(iii) ||uk − uk−1||∞ < � 1/2
mach(1 + ||uk||∞) ,

(iv) xi
k = 0 for all i ∈∈ Ak ,

where the machine precision is� mach ≈ 2. 2204e− 16. Notethat this is a very demanding termi-

nation criterion.

With C = 0, there were 171 binding constraints at the solution and these were identified

after 7 iterations for the projected conjugate and projected L-BFGS methods and after 12 itera-

tions for the projected steepest descent method.With C = 100, there were 436 binding con-

straints at the solution and these were identified after 19, 28 and 153 iterations, respectively, for

the three methods.

The number of iterations, function evaluations, gradient evaluations and cpu time† required

to reach termination for problemOCP with C = 0 are given in Table 3.1.The same information

† Experiments were run on a 60MHz Sun SparcStation 20 with 96MB internal memory and 1MB external cache.The algo-
rithms were implemented in Matlab’s M-script language with the exception of the L-BFGS search direction routine which was written
in C.

- 93 - Chap. 3

is provided in Table 3.2 for problemOCP with C = 100. It is clear that the projected conjugate

gradient and the projected L-BFGS methods perform significantly better than the project steepest

descent method.

Method Functioncalls Gradientcalls Iterations CPUTime

Conjugate Gradient 70 20 19 4.2sec.

L-BFGS 43 14 13 2.7 sec.

Steepest Descent 97 29 28 5.3sec.

Table 3.1:Work done to solve problemOCP with C = 0.

Method Functioncalls Gradientcalls Iterations CPUTime

Conjugate Gradient 249 38 37 10.9sec.

L-BFGS 163 38 37 8.3 sec.

Steepest Descent 1788 355 354 81.0sec.

Table 3.2:Work done to solve problemOCP with C = 100.

The optimal solution,û, of the discretized problem withC = 100 is shown in Figure 3.1.

3.4 CONCLUDING REMARKS

We hav epresented an implementable projected descent algorithm model, Algorithm Model

PD, and proved its convergence for any search directions satisfying the conditions in equations

(2.5a,b,c). Thisalgorithm model solves a common class of problems involving simple bounds on

the decision variables. Itis particularly useful if the number of decision variable is large such as

can occur in the discretization of optimal control problems with control bounds.Furthermore,

many problems with simple bounds on the decision variables as well as some additional general

constraints can be converted into the form of problemP using quadratic penalty functions or aug-

mented Lagrangians.The Algorithm Model PD, when used in conjunction with a conjugate gra-

dient method or the limited-memory BFGS method for determining the unconstrained portion of

the search directions, has the advantage of requiring very little storage and work per iteration.

Yet, the rate of convergence behavior can be expected to be the same as that of the unconstrained

conjugate gradient or limited-memory BFGS methods after a finite number of iterations.

- 94 - Chap. 3

optimal control
lower bound

0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

4

5

6

Time

Solution with C = 100.

Fig. 3.1: Plot showing the optimal control for problemOCP with C = 0 (n = 1000).

- 95 - Chap. 3

Chapter 4

NUMERICAL ISSUES

4.1 INTRODUCTION

In Chapter 2, we provided a framework for the construction of approximating problems

{ (PN , � N) } that are consistent approximations to an original problem (P, �). In Chapter 3, we

presented an algorithm for solving a particular class of problemsPN . In this chapter, we focus

our attention on two practical issues that arise in the numerical implementation of an algorithm

for solving a sequence of problems{ PN } w hose solutions{ � N } converge to a solution � * of

P. These issues are, roughly speaking,(i) given an approximate solution� Ni
* to problemPNi

at

discretization level Ni and a new discretization level Ni+1, select a new integration mesh for prob-

lem PNi+1
such that ||� Ni+1

* − � * ||H2
is as small as possible, and(ii) provide estimates of

||� Ni
* − � * ||H2

.

These issues are important for practical computation because they allow for the discretiza-

tion to be refined in a way that leads to more accurate solutions with less computation.Further-

more, because we cannot compute the entire sequence{ � N* } , i t is desirable to know the error,

||� N f
* − � * ||H2

, of the finite-dimensional solution at some final discretization level N f . A descrip-

tion of the optimal control problems used for the numerical examples in this chapter can be found

in Appendix B. Throughout this chapter we presume that Assumption 2.3.1 holds.

Notation. In this chapter, we will be comparing solutions of approximating problems that are

defined on different integration meshes.Thus we need to extend the notation of Chapter 2 to

explicitly indicate the discretization level of the mesh.We will do this by adding the subscriptN

when necessary. We start by defining thediscretization meshfor problemPN ,

(1.1a)tN =. { tN,k } N
k=0 ,

wheretN,k is thek-th mesh point at discretization level N. Since we will allow tN to be a non-

uniform mesh, we will denote the finite dimensional control subspaces byLtN
instead of justLN .

Similar, the mapping from between controlsu ∈∈ LtN
and their samplesu ∈∈ LtN

will be denoted

- 96 - Chap. 4

VA,tN
: L tN

→ LtN
. Recall from (2.4.5a,b) that elementsu ∈∈ LtN

are partitioned as follows:

(1.1b)u = (u0, u1, . . . ,uN−1) , uk = (uk,1, . . . ,uk,r) ,

with uk, j ∈∈ IRm, j = 1, . . . ,r . Also recall that the subspacesLtN
are defined such that the dis-

cretization mesh coincides with the breakpoints of the finite dimensional controls.Thus, we will

also refer totN as the controlbreakpoints.

For spline controls we usetN to refer either to the breakpoints or to the knot sequence con-

structed from these breakpoints, depending on the context. Thus,for example, we will re-write

L(�)
N asL(�)

tN
where, in this context, tN is the general knot sequence for the� -th order spline sub-

space with breakpoints{ tN,k } N
k=0. The map from splines to their coefficients is

StN ,� : L (�)
tN

→ L(�)
tN

. So, given u ∈∈ L(�)
tN

, � = StN ,� (u) is the vector

(1.1c)� = (� 1 , � 2 , . . . , � N+� −1) ,

with � k ∈∈ IRm, of coefficients for the splineu defined on the knot sequencetN . When used in

linear algebra operations, elements ofLtN
and L(�)

tN
will be treated, respectively, as m × Nr and

m × (N + � − 1) matrices in keeping with our previous convention.

Non-unif orm meshes. The discussion of approximating problems in Chapter 2 was based on

a uniform discretization mesh{ tN,k } k ∈∈ � with tN,k = k /N. In fact, the convergence results still

hold for any sequence of meshes with the property that maxk tN,k+1 − tN,k → 0 as N → ∞. In

practice, we also require mink tN,k+1 − tN,k > 0 for all N. Both of these mesh characteristics are

ensured if the following property holds for eachN:

Definition 1.1 (Quasi-uniformity). Let tN = { tN,k } N
k=0 be a mesh for problemPN and let

(1.2a)∆N,k =. tN,k+1 − tN,k .

ThentN is said to be aquasi-uniformmesh if

(1.2b)
maxk ∆N,k

mink ∆N,k
≤ � ,

for some fixed constant� < ∞ independent ofN. We will refer to � as thequasi-uniformity

ratio.

This definition ensures that, for any sequence of quasi-uniform meshes,

(1.2c)∆N =. maxk ∆N,k → 0 as N → ∞ .

- 97 - Chap. 4

4.2 INTEGRATION ORDER AND SPLINE ORDER SELECTION

The results of Chapter 2 show that Runge-Kutta integration methods satisfying the assump-

tions for Corollary 2.5.10 produce consistent approximations.Additionally, Lemma 2.4.10 states

order of integration error results and Proposition 2.6.2 provides one result on the order of error of

approximating problem solutions for unconstrained problems.We will now discuss the relation-

ship of the integration and spline orders to the error, ||� * − � N
* ||, of the solutions of the approxi-

mating problems.For the remainder of this discussion, we will refer to this quantity simply as the

solution error. A solution is said to have high accuracy if the solution error is small relative to the

discretization level.

The desire to obtain high solution accuracy is, of course, the motivation for studying higher-

order Runge-Kutta methods in the construction of the approximating problemsPN . Unfortu-

nately, very little is known, in general, about the relationship between integration error and the

error of the solutions ofPN . The primary obstacle to such an understanding is the fact that little

is known about the smoothness of optimal controls (i.e., the regularity of solutions) for con-

strained optimal control problems.In this section, we will collect some positive and some neg-

ative results concerning the smoothness of optimal controls and the solution errors of approximat-

ing problems.These results provide a basis for selecting the order of the Runge-Kutta method

and the order of the control representation in the construction ofPN .

In what follows, we will consider only the four, full-order RK methods whose Butcher

arrays are displayed below. We stop at fourth order simply because there is no fifth order RK

method with less than six stages.

A1 = 0

1

0

A3 = 1
2

1
2

1 −1 2

1
6

2
3

1
6

0

A2 = 1 1

1
2

1
2

0
1
2

1
2

A4 = 1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

The first of these RK methods,A1, is obviously Euler’s method and the second,A2, is an explicit

trapezoidal rule (also known as the Euler-Cauchy or improved Euler method).The third order

method,A3, is Kutta’s formula and the fourth order method,A4, is the classical Runge-Kutta

method. Thesefour methods are selected because, from what is known about RK discretization

- 98 - Chap. 4

of optimal control problems (both theoretically and experimentally), these provide the best results

for the given number of stages.Needless to say, all of these methods satisfy the Assumptions 4.1,

4.3 and 4.6 required for consistent approximations.These methods also have a symmetry

property† that is used in[42,Thm. 3.1] to derive some of the error bounds we will now discuss.

For methodsA1, A2, and A3, there are no repeated values in thec vector of the Butcher array.

Thus, for these methods,r = s wherer is the number of control samples per integration interval

and s is the number of stages in the RK methods.For method A4 however, c2 = c3 = 1
2, and

thereforer = 3 and s = 4.

4.2.1 Solution error f or unconstrained pr oblems

The best error results are known for unconstrained problems with fixed initial conditions of the

form

u ∈∈ L∞,2[0,1]
min { f (u) | ̇x = h(x, u) , t ∈∈ [0, 1] } ,P

where f (u) = f
∼

(xu(1)). We will assume thatf
∼

(⋅) and h(⋅, ⋅) are sufficiently smooth so that all

required derivatives exist. Theapproximate problems are defined, for a given discretization level

N, by replacing f (u) with fN(uN) =. f
∼

(xuN
N,N) whereuN ∈∈ LN andxuN

N,N is the computed value of

xuN (tN) obtained by Runge-Kutta integration on the meshtN . The known error results depend on

the assumption that the differential equations can be integrated with full-order accuracy at a solu-

tion u* . That is,

(2.1)||xu* (tk) − xu*
N,k|| = O(∆s

N) , \/ k ∈∈ { 0, . . . ,N } ,

wheres is the order of the RK method.Essentially, this is the same as a regularity condition on

u* , namelyu* ∈∈ C(s)[0, 1]. The following table, based on[42] and Proposition 2.6.2, provides the

order of maxk, j ||uN* k, j − u* (� k, j)||, whereuN* = VA,tN
(uN*), relative to ∆N =. maxk ∆N,k. The last

column is only experimentally supported conjecture.

† Each method is equivalent to the transpose of itself run backwards in time[67].

- 99 - Chap. 4

RK Method
k, j

max ||uN* k, j − u* (� k, j)||
k

max ||x* k − x* (tk)||

A1 O(∆1
N) O(∆1

N)

A2 O(∆2
N) O(∆2

N)

A3 O(∆2
N) O(∆3

N)

A4 O(∆3
N) O(∆4

N)

Table 1.1: Order of solution errors for the approximating problems.

Note that for methodA3, the order of the control solution error, maxk, j ||uN
*

k, j − u* (� k, j)||, is only

O(∆2
N) even thoughr = 3. Becauseof this, it makes sense when using methodA3 to depart from

our convention of usingr -th order polynomials for methods that user control sample per integra-

tion interval and instead use second order polynomials.Generally, it may be advantageous, espe-

cially for constrained problems, to use splines of order lower thanr . Thus, we will henceforth

make it a convention thatr represents the number of distinct controls samples required by the RK

method during each integration time step while� ≤ r represents the order of the control represen-

tation. Generalformulas for the gradient computations for controlsu ∈∈ L(�)
N with � not necessar-

ily equal tor are given in the RIOTS user’s manual.

If representationR1 (piecewise polynomials of order� , where � is the exponent of∆N

given in the middle column of Table 1.1) is used for the controlsuN , then ||uN* − u* ||L∞ = O(∆�N)

sinceu* is assumed to be smooth.We will show this for the harder case of spline approximations

below.

The bounds in Table 1.1 are derived assuming that their are no constraints between the con-

trol samplesuk, j . Such is not the case for splines because the continuity and smoothness condi-

tions on splines implicitly enforce constraints between the control samples.For example, if

uN ∈∈ L(2)
N (linear splines), then for eachk ∈∈ { 0, . . ,N − 2 } , uk,2 = uk+1,1. That is, continuity is

imposed across breakpoints.Proposition 2.2 below indicates that, nonetheless, the same error

results do hold for finite-dimensional controls represented by splines.Before stating this proposi-

tion, we note the following result for spline approximations.

Theorem 2.1[63,Thm. XII.1 (p. 170)]. Given a spline order � , there exists a constant

c� < ∞ such that for all knot sequences tN with

t−r+1 = . . . = t 0 = a < t1 . . . < tN−1 < b = tN = . . . = t N+� −1 and for allu ∈∈ C(�)[a, b],

(2.2)
v ∈∈ L(�)

tN

min ||u − v||∞ ≤ c� ∆ �N ||u(�)||∞ ,

where∆N =. maxk ∆N,k andu(�) is the� -th derivative of u(t) with respect tot.

- 100 - Chap. 4

We will now provided a bound for the solution error ||uN* − u* ||L∞ for approximating problems

defined with spline controls.For the statement and proof of Proposition 2.2, we will use the fol-

lowing notation for derivatives of the approximating functions with respect to spline coefficients

and with respect to control samples.First, letu ∈∈ L(�)
tN

be a� -th order spline with coefficients
� = StN ,� (u). We define fN(�) =. fN(S−1

tN ,� (�)). Then, we use the notation

d� fN : IRm× (N+� −1) → IRm× (N+� −1) with

(2.3a)d� fN(�) =.

d

d � 1
fN(�) . . . d

d � N+� −1
fN(�)

to denote the derivative of fN(�) with respect to the components of� . Since L(�)
tN

⊂ LtN
(the

space of piecewise polynomials), we can also definefN(u) = f N(V−1
A,tN

(u)) whereu = VA,tN
(u).

Whether the argument of fN(⋅) is spline coefficients or control samples is always clear from con-

text. We will use the notationdu fN : IRm× Nr → IRm× Nr with

(2.3b)du fN(u) =.

d

du0,1
fN(u) . . . d

du0,r
fN(u) . . . d

duN−1,1
fN(u) . . . d

duN−1,r
fN(u)

,

to denote the derivative of fN(u) with respect to the control samples.As usual,r is the number of

control samples per interval. Note that (2.3a,b) define gradients with respect to the Euclidean

norm on the coefficient spaces; these derivatives are not the gradients with respect to the norms

we have defined onL(�)
tN

andLtN
.

Theorem 2.2 (Error of spline solutions). Let u* ∈∈ C(�)[a, b] be a local solution ofP where�
is the exponent of∆N =. maxk ∆N,k in Table 1.1 corresponding to the RK method under consider-

ation and assume that (2.1) holds.Suppose that{ uN* } i s a sequence such thatuN* ∈∈ L(�)
tN

with

spline coefficients � N* = StN ,� (uN*), uN* is a local solution ofPN anduN* → u* . Also, assume

that for eachN, d2� fN(⋅) exists and is continuous,d2� fN(� N*) > 0 and ∆N ||d2� fN(⋅)−1|| is uni-

formly bounded with respect toN. Then ||u* − uN* ||∞ ∼ O(∆ �N).

Proof. For each N, let ûN = arg minu ∈∈ L(r)
tN

||u* − u||∞ and let �ˆ N = StN ,� (ûN). We will first

obtain a bound for ||� * N − �ˆ N || in terms of ||du fN(VA,tN
(ûN))|| which we will then show is of order

O(∆�N). Finally, we will use this bound to show that ||u* − uN* ||∞ is of orderO(∆�N).

Expanding the derivative of fN(⋅) to first order, we hav e

d� fN(�ˆ N) = d � fN(� N*) + ∫
1

0
(�ˆ N− � N*)d2� fN(� N* + s(�ˆ N− � N*)) ds

- 101 - Chap. 4

(2.4a)= (�ˆ N− � N
*) ∫

1

0
d2� fN(� N

* + s(�ˆ N− � N
*))ds .

sinced� fN(� N*) = 0. Next, uN* → u* and, from Theorem 2.1,ûN → u* as N → ∞, we hav e

that ûN → u* N as N → ∞. Now, sinceu∼ N =. ûN− u* N is itself a spline andu∼ N → 0, it follows

from Corollary XI.2[63,p. 156] that

(2.4b)�ˆ N→ � * N as N → ∞ .

Using the hypotheses thatd2� fN(⋅) is continuous andd2� fN(� N
*) > 0, we see from (2.4a) and

(2.4b) that there exists anN* < ∞ such that

(2.5a)�ˆ N− � N* =

∫

1

0
d2� fN(� N* + s(�ˆ N− � N*))ds

−1

d� fN(�ˆ N) , \/ N ≥ N* .

Thus, since∆N ||d2� fN(⋅)−1|| is uniformly bounded with respect toN and �ˆ N→ � * , there exists a

constantK < ∞ such that

∆N ||� N* − �ˆ N ||∞ ≤ K ||d� fN(�ˆ N)||∞ = K ||du fN(VA,tN
(ûN))ΦA,tN

||∞

(2.5b)≤ K ||du fN(VA,tN
(ûN))||∞||ΦA,tN

||∞ ,

where we have used (2.7.12c) for the equality. The Nr × (N + � − 1) matrixΦA,tN
was defined by

(2.7.11a): thek-th column ofΦA,tN
contains the value of thek-th B-spline evaluated at theNr

control sample times.Now, there exists a� 1 < ∞ such that

ne 2

||du fN(VA,tN
(ûN))||∞ ≤ ||du fN(VA,tN

(ûN)) − du fN(VA,tN
(u*))||∞ + ||du fN(VA,tN

(u*))||∞

≤ � 1∆N ||VA,tN
(ûN− u*)||∞ + ||du fN(VA,tN

(u*))||∞

≤ � 1∆N ||ûN− u* ||∞ + ||du fN(VA,tN
(u*))||∞

(2.6)≤ � 1c� ∆ � +1
N + ||du fN(VA,tN

(u*))||∞ .

The second of these inequalities was obtained from the Lipschitz continuity ofdu fN(⋅). Thecon-

stantc� in the fourth inequality comes from Theorem 2.1.The quantity ||du fN(VA,tN
(u*))||∞ is

used in the proofs of Theorem 3.1 in[42] and Proposition 2.6.2 which provide the bounds in the

middle column of Table 1.1.These proofs show that

(2.7)||du fN(VA,tN
(u*))||∞ = � 2∆

� +1
N

for some constant� 2 < ∞ independent ofN. Combining (2.5b), (2.6) and (2.7) with the fact that

- 102 - Chap. 4

||ΦA,tN
||∞ = 1 (due to the normalization of the B-splines), we see that

(2.8a)||� N
* − �ˆ N ||∞ ∼ O(∆ �N) ,

Noting that� N* − �ˆ N are the spline coefficients foruN* − ûN , we can use Corollary XI.3 in[63,p.

156] to show that (2.8a) implies that

(2.8b)||uN* − ûN ||∞ ∼ O(∆ �N) .

Finally, using (2.8b) and Theorem 2.1, we obtain the desired result:

(2.9)||u* − uN
* ||∞ ≤ ||u* − ûN ||∞ + ||ûN− uN* ||∞ ∼ O(∆ �N) .

Remark 2.3. The assumption in Theorem 2.2 that∆N ||d2� fN(�)−1|| is uniformly bounded in∆N

and � is essentially the same as the assumption used by Hager for Theorem 3.1 in[42]. In that

paper, Hager argues that the assumption is reasonable.

There are optimal control problems whose approximating problems based on RK integra-

tion have solutions of higher accuracy than those listed in Table 1.1.However, this does not occur

generically even for linear/quadratic problems.Therefore, based on the result in Table 1.1, the

order� of the control representation should be chosen equal to the order of error given in the sec-

ond column.Choosing� too small reduces the benefit of the higher-order integration accuracy (it

does not eliminate this benefit, see below). Choosing� too large results in extra computational

work and can actually reduce the accuracy of solutions due to an over-parameterization effect of

the controls. In particular, for problems without control bounds and/or trajectory constraints, a

piecewise linear control representation should be used with methodA3 and either a piecewise lin-

ear or a piecewise quadratic representation should be used with methodA4.

4.2.2 Constrained Problems

It is difficult to extend error results of the type given in Theorem 2.2 to constrained problems for

many reasons. To explore some of the issues involved, it is helpful to consider two separate

sources of error: the error due to numerical integration and the error due to the limited approxi-

mating capabilities of finite dimensional controls.For the sake of brevity we will only consider

spline controls and we will not deal with free initial conditions.Define

(2.10a)u* = arg minu ∈∈ U { f (u) | u ∈∈ Ω } ,

(2.10b)uN* = arg minu ∈∈ U(�)
N

{ fN(u) | u ∈∈ Ω } ,

- 103 - Chap. 4

(2.10c)ûN = arg minu ∈∈ U(�)
N

{ f (u) | u ∈∈ Ω } ,

where the setΩ ⊂ Lm
∞,2[0, 1] represents state constraints.Any control constraints in the optimal

control problems are specified in the setsU andU()
N . As usual,u* represents the solution ofP

anduN
* represents the solution ofPN . Additionally, we hav edefinedûN

* as the solution ofP but

with the control space restricted toU()
N . By the triangle inequality, the solution error for the

approximating problemPN satisfies

(2.11a)||uN* − u* ||2 ≤ ||uN
* − ûN ||2 + ||ûN− u* ||2 = E int + Erep ,

where

(2.11b)Eint =. ||uN
* − ûN ||2

(2.11c)Erep =. ||ûN− u* ||2

are the errors due to, respectively, the numerical integration and the finite dimensional representa-

tion of controls for the approximating problems.Ideally, the integration order and the spline

order should be chosen to make Eint and Erep roughly equal. Otherwise some computational

effort is being wasted. Below, we will present some evidence that second order splines are the

best choice when using RK methodsA2 andA3. The choice of the appropriate spline order for

use with RK methodA4 and the choice of which RK method to use is more involved and is also

discussed.

Considerations f or spline or der selection. Since the error bounds for constrained problems

are usually worse than the error bounds for unconstrained problem, one can conclude from the

results in Table 1.1 and Theorem 2.2 that, at most, only first or second order splines should be

used in conjunction with RK methodsA2 andA3 (for Euler’s method the only choice is first order

splines), and that only first, second or third order splines should be used with RK methodA4.

The selection of an appropriate order for the spline control subspace depends on how that order

affects the representation errorErep. The size ofErep for a given meshtN depends primarily on

the smoothness of the optimal controlu* (⋅). For many constrained optimal control problems, the

optimal controlu* (⋅) is not even continuous. Thestrongest regularity result available for con-

strained optimal control problems,[97], provides conditions for the optimal control of strictly

convex problems to be Lipschitz continuous.Thus,Erep may be only of orderO(∆N).

For our method of discretization, there is clearly no reduction in the solution error to be

gained by using a higher order control representation when the optimal control is discontinuous†.

- 104 - Chap. 4

On the other hand, even though it generally impossible (without knowing the location of disconti-

nuities in the optimal control) to improve upon Erep ∼ O(∆), there is little to be lost by using sec-

ond order, instead of first order, splines in conjunction with RK methodsA2, A3 andA4 because

there is very little extra work involved in computing a solution toPN . At the same time it seems

that, at ‘‘non-asymptotic’’ values of the discretization level N, second order splines produce

somewhat better results than piecewise constant controls even for problems with discontinuous

optimal controls.Moreover, for convex problems it has been shown in[28,31,98] that the Ritz-

Trefftz method gives an approximation error of orderO(∆3/2
N) assuming sufficient smoothness of

the problem data.This is due to the fact that d
dt u* (t) ∈∈ L2[0, 1]. Hence, in this case, there is a

clear benefit to using second order splines over piecewise constant controls.

Based on these considerations, the best choice for the control representation when using

methodA2, A3 or A4 for problems whose solutions are likely to be non-smooth (such as problems

with control constraints) is second order splines.If there are no control constraints and there is

reason to believe that the optimal control is smooth then third order splines should be used with

RK methodA4 since third order convergence can be achieved. Thereis a caveat to this statement,

however. If the spline coordinate transformation given by (2.7.18) is to be used during the solu-

tion of PN and the work used by optimization algorithm that solves PN requires less thanN3

operations (such as the projected descent method of Chapter 3 based on conjugate-gradient or the

limited-memory BFGS search directions), then at a some discretization level N, the work

required to compute and apply the coordinate transformation will exceed the amount of work

required by the optimization algorithm.In this case, quadratic splines should not be used because

it will be less expensive to solve the problem at a higher discretization level using second order

splines.

Finally, it is very common forEint >> Erep at low to moderate discretization levels. If this is

the case, it makes sense to use methodA4 with linear splines because, as seen from (2.11a), the

reduction inErep afforded by the use of quadratic splines will be rendered meaningless by the size

of Eint.

To demonstrate the effect of the spline order onErep, we hav esolved an unconstrained prob-

lem and a constrained, free final time problem using first, second, third and fourth order splines

on a uniform mesh withN = 20 intervals. Thetwo problems are the unconstrained Rayleigh

problem and the Bang problem which are described in Appendix 2.The solution errors are given

† Although, as discussed in Chapter 6, it may be possible with a two-phase optimization approach to achieve better error re-
sults. Duringthe second phase some grid points are allowed to move tow ards discontinuities inu* (⋅). Theefficacy of this approach re-
lies on the fact that, under suitable conditions,u* (⋅) is analytic on every interval in which the binding constraints do not change,
see [28,31].

- 105 - Chap. 4

in Table 2.1 and the solutions are plotted in Figure 2.2a and Figure 2.2b. We computed the solu-

tion error as

(2.12)||uN
* − u* ||2 =

∫

T

0
(uN

* (t) − u* (t))2dt

1/2

,

whereT is the (optimal) final time.For problem Rayleigh,T = 2. 5; for problem Bang,T* = 30.

All of these solutions were computed using a variable step-size integration method so that the

integration errorEint would be negligible compared to the error from the spline approximations.

The results show that, for the unconstrained problem, the error decreases substantially as the

spline order is increased.On the other hand, using higher-order splines for the constrained prob-

lem does not cause a significant reduction in the error. It should be noted, however, that the error

is slightly less for second order splines than for first order splines.

Spline order ||uN* − u* ||2 (Rayleigh,T = 2. 5) ||uN* − u* ||2 (Bang,T* = 30)

1 0.3119 1.7146

2 0.1071 1.2357

3 0.0166 1.4585

4 0.0092 1.4166

Table 2.1: Solution error for an unconstrained and a constrained problem as a function of spline
order.

These results suggests that, for problems with control constraints, either a first or a second order

control representation should be used.

Piecewise polynomial controls versus splines. Recall theL(¡)
tN

⊂ L1
tN

. That is, the spline con-

trol spaces are subspaces of the piecewise polynomial control subspaces.Because the controls in

L1
tN

are allowed to be discontinuous at mesh pointstk, it would seem beneficial to useLtN
rather

than splines if we could place some of the mesh points at the locations of any discontinuities in

the optimal control.There are two reasons this does not help.First, we don’t not know the loca-

tions of such discontinuitiesa priori . Second, even if we were able to place the control break-

points at the locations of discontinuities in the optimal control it is important to realize that loca-

tions of discontinuities in the optimal control forp will not be the same as the location of discon-

tinuities for the solutions ofPN because of the errorEint due to the fixed step-size integration (but

see previous footnote).It should also be noted that we could allow discontinuities in the splines

by defining the spline subspaces with repeated interior knots (see[63]).

- 106 - Chap. 4

0 0.5 1 1.5 2

−1

0

1

2

3

4

5

Piecewise Constant

0 0.5 1 1.5 2

−1

0

1

2

3

4

5

Linear Spline

0 0.5 1 1.5 2

−1

0

1

2

3

4

5

Quadratic Spline

0 0.5 1 1.5 2

−1

0

1

2

3

4

5

Cubic Spline

Fig. 2.2a: Effect of spline order on the solutionûN for the unconstrained problem Rayleigh.
The plots show ûN(t) versust.

0 10 20 30

−2

−1

0

1

Cubic Spline

0 10 20 30

−2

−1

0

1

Quadratic Spline

0 10 20 30

−2

−1

0

1

Linear Spline

0 10 20 30

−2

−1

0

1

Piecewise Constant

Fig. 2.2b: Effect of spline order on the solutionûN for the constrained problem Bang.The plots
show ûN(t) versust.

- 107 - Chap. 4

Considerations f or integration or der selection. The Runge-Kutta order should, ideally, be

chosen to minimize the amount of work required to obtain a solution of specified accuracy. This

choice depends on a combination of factors: the integration error which depends on the nonlinear-

ity and stability of the differential equationṡx = h(x, u), the smoothness of solutions to the origi-

nal optimal control problem, and the amount of work used by the optimization algorithm used to

solve the approximating problems to perform each iteration.Generally speaking, however, none

of these quantities is known in advance. Thus,we can only offer guidelines for the RK order

selection. Furtherresearch is needed to provide a more systematic approach.

The amount of work, WN , to solve a the discretized problemPN is roughly

(2.13)WN ≈ niter(Wint + Wopt) ,

whereniter is the number of iterations needed to achieve a certain optimality tolerance,Wint is the

work required to integrate the system dynamics for a given ¢ N and to compute the gradients for

each function, andWopt is the amount of work (linear algebra) done by the optimization algorithm

during each iteration (primarily in computing the search direction).Typically, Wint is linear inN

(unless there are trajectory constraints) and linear in the integration order. The relationship

betweenWopt and N depends on the integration algorithm.Equation (2.13) is only approximate

because the system dynamics usually have to be integrated more than once during line searches.

But it does show that increasing the discretization level and/or the integration order (in order to

decreaseEint) will increaseWN . At the same time, equation (2.11a) shows that just decreasing

Eint does not necessarily imply that the overall solution error will decrease.

Without a more quantitative analysis, we consider RK methodA4 to be the best choice,

except in the two situations described below, because at low or moderate discretization levels, it is

typically the case thatEint >> Erep. This is partly due to the fact that the errors in the control are,

to some extent, ‘‘integrated out’’ by the system dynamics.Therefore, even if Erep ∼ O(∆N), the

solution error will be smaller for low to moderate discretization levels if Eint is made smaller by

using a higher order RK method.Also, for many unstable nonlinear systems, a certain amount of

integration accuracy is required simply to be able to obtain a numerical solution to the differential

equations. Inthis situation, the minimum required discretization level may be quite large for a

low-order RK method.Thus, it is usually best to use methodA4.

However, there are at least two situations in which it is may be better to use a lower order

RK method. The first case is problems with reasonably behaved linear dynamics and control

bounds. Accordingto the preceding discussion, only first order second order splines should be

used. Thus,Erep ∼ O(∆2
N) at best. Onthe other hand, because of the simple system dynamics,

Eint is likely to be much smaller thanErep if RK methodA4 is used. Thus, more work will be

- 108 - Chap. 4

done in the integrations while the overall error of the approximating solutions will be no greater

than those produced using methodA2
†.

The second case is problems that include trajectory constraints.When solving the dis-

cretized problems, the gradients for each pointtk in the trajectory constraint must be computed.

Because trajectory constraints are evaluated atN + 1 such points, the amount of work to compute

these gradients is proportional tosN2 operations‡, wheres is the number of stages in the RK

method. Thiscan amount to a great deal of work, especially if the gradients are computed using

adjoint equations.The amount of work can, therefore, be substantially reduced by using a lower

order RK method.

When solving problems with control and/or trajectory constraints at high discretization lev-

els, it is probably disadvantageous to use anything but methodsA1 or A2 since the overall solu-

tion error is, at best,O(∆2
N).

4.3 INTEGRATION ERROR AND MESH REDISTRIBUTION

From (2.11a), we see that ||u* − uN
* ||2 = E int + Erep. It turns out thatEint and Erep are, in

fact, closely related.To see this, letu : [0, 1] → IRm be continuous on each interval [tk, tk+1) and

let uN ∈∈ L1
tN

be a piecewise polynomial function of order£ ≥ 2. Then, by Jackson’s

Theorem [63,p. 33], there exists a constantK < ∞ such that, on each interval I k =. [tk, tk+1),

(3.1a)||u − uN ||I k,∞ ≤ K
∆N,k

£ − 1
¤

k(uN ;
∆N,k

2(£ −1)
) , k = 0, . . . ,N − 1 ,

where ||u||I k,∞ =. maxt ∈∈ I k
||u(t)|| and ¤ k(uN ; ⋅) is the modulus of continuity ofuN(t) on the inter-

val t ∈∈ [tk, tk+1] defined by

(3.1b)¤
k(u ; ¥) =. max { ||u(t1) − u(t2)|| | t1, t2 ∈∈ [tk, tk+1] , |t2 − t1| ≤ ¥ } .

If u(t) is continuously differentiable on each interval (tk, tk+1, then ¤ k(u ; ¥) ≤ || u̇||I k,∞ ¥ . In partic-

ular, the approximation error ||u − uN ||I k,∞ is largest on intervals where ||u̇||I k,∞ is largest. Jack-

son’s theorem also applies to approximation of smooth functions in which case it is the norm of

the higher derivatives of u that determine the approximation error.

† A secondary problem in this regard is that the integration accuracy of methodA4 can make it difficult to refine the mesh based
on the procedures discussed in the next section.

‡ In fact, the amount of work is proportionalN(N + 1) / 2operations since the gradient of the trajectory constraint at timetk is
zero fort > tk. Even if an ¦ -active set method (such as in[99]) is used to bypass unneeded gradient computations, the work is still
proportional toN2 operations.

- 109 - Chap. 4

At the same time, we have that the local integration error produced by one step of ans-th

order RK method (see proof of Lemma 4.10 in Appendix A) is

(3.2)xN,k+1 = x N,k(tk+1) + eN,k∆s+1
N,k + O(∆s+2

N,k) ,

wherexN,k(⋅) is the solution ofẋ = h(x, u) with x(tk) = x N,k. The quantityeN,k∆s+1
N,k is called the

principal local truncation error (PLTE) and xN,k+1 − xN,k(tk+1) is the local truncation error

(LTE). We will refer to eN,k as the coefficient of the PLTE. It is possible to produce an expres-

sion for eN,k by comparing the Taylor expansion of xN,k+1 with the Taylor expansion for

xN,k(tk+1), both aroundxN,k. Howev er, this expression, which depends on the RK method, is

quite complicated.As an example,eN,k for methodA2 applied to a scalar system withu differen-

tiable between mesh points is

(3.3)eN,k =
1

2

1

3
(hxxh2 + huxhu̇ + huxhu̇ + huuu̇2 + huü) −

1

6
(hxh + huu̇)

.

The important aspect of the local truncation error is thateN,k depends on time derivatives of u.

Therefore, regions whereuN provides a poor approximation tou according to (3.1a) are likely to

coincide with regions where the LTE for the integration is large†. Thus, it is desirable to place

many mesh breakpoints in time intervals where there is a relatively high level of local integration

error, and fewer mesh points elsewhere. Thisleads to higher integration accuracy for a given dis-

cretization level and also a better sequence of breakpoints for the approximation ofu* by uN .

4.3.1 Computing the local integration err or

For a giv en N, we can computeeN,k, k = 0, . . . ,N − 1 approximately by comparingxN,k+1 to the

value which would have been obtained by taking two RK half-steps fromxN,k. As in equation

(3.2), let xN,k(tk+1) be the solution ofẋ = h(x, u) with x(tk) = x N,k and define the following

quantities:

(3.4a)x∼ N,k,1 =
∆N,k

2
F(xN,k, v∼ k1)

(3.4b)x∼ N,k,2 =
∆N,k

2
F(x∼ N,k,1, v∼ k2) ,

where

† This heuristic can fail if the local integration errors are very small. This can happen, for instance, when integrating a linear
system with piecewise linear control using a fourth order integration method because the derivatives of the spline do not show up, or
are multiplied by very small quantities, in the Taylor expansion for the LTE.

- 110 - Chap. 4

(3.4c)v∼ k1 = (u[tN,k + c1
∆N,k

2] . . . u[tN,k + cs
∆N,k

2])

(3.4d)v∼ k2 = (u[tN,k + (1+ c1) ∆N,k
2] . . . u[tN,k + (1+ cs)

∆N,k
2]) .

and F(x, v∼) is the composite function defined in (2.5.1) that implements one Runge-Kutta inte-

gration step for the given set of control samplesv∼ . The quantityx∼ N,k,2 thus defined represents

the result of taking two RK half-steps fromxN,k. These quantities are displayed in Figure 3.1.

By making the approximation that the coefficient of the PLTE of the first half-step is the same as

that for the second half-step (which is reasonable since the control is smooth over the whole inter-

val), we obtain, by adding the PLTE for each half-step,

(3.5)x∼ N,k,2 = x N,k(tN,k+1) + 2eN,k

∆N,k

2

s+1

+ O(∆s+2
N,k) .

Combining this expression with (3.2) and dropping the higher order terms, we obtain the follow-

ing estimate of the norm of the PLTE,

(3.6a)|eN,k|∆s+1
N,k ≈

|xN,k+1 − x∼ N,k,2|

(1 − 1/2s)
, k = 0, . . . ,N − 1 .

For systems of differential equations,eN,k is a vector and |⋅ | can be taken as any norm on IRn.

Instead of the absolute size of the PLTE, the relative size of the PLTE can be estimated using

(3.6b)|eN,k|∆s+1
N,k ≈

|xN,k+1 − x∼ N,k,2| / (1 + |xN,k|)

(1 − 1/2s)
, k = 0, . . . ,N − 1 .

tt kk +1

x

x k+1
t()

x

x

x
N,k,1

N,k,2

N,k

x
N,k+1

N,k

N,k
x (t)

Fig. 3.1: The quantities is used in computingeN,k.

- 111 - Chap. 4

Remark 3.1. It is important to state that this type of computation would not normally be done

when solving differential equations because it involves essentially re-integrating the differential

equations on a doubled mesh (although it is possible to reduce the amount of work by re-using

quantities computed in the full-step length calculation for the half-step calculations).However,

this amount of work is small relative to the number of simulation required to solve PNi
. More-

over, the work required to compute an integration mesh that achieves a certain accuracy with as

small of a discretization level as possible is greatly offset by the savings in solvingPNi+1
that

result from having fewer decision variables in the discretized problem.

Remark 3.2. There are several other interesting methods for approximately computing the

local truncation errors for Runge-Kutta integration. Themethod in[100], presented for RK4, is

similar to ours except that it uses the doubled step computation for the integration result and use

the single step computation for the purpose of constructing an embedded third order RK method

to compute the error estimation.In this way, the error estimate is produced from a (3,4) pair with

local extrapolation and requires no additional function evaluations. Anothervery efficient

approach based on a similar idea is given in [101]. Also,it is possible to obtain error estimates by

constructing interpolating polynomials as is done with linear multi-step methods[102]. A com-

parison of the efficiency and accuracy of error estimation methods is given in [103].

Global Integration Err or. It is sometimes useful to have an estimate for the total integration

error. Based on the convergence proofs for RK integration, it follows that

(3.6c)||xN,N − x(tN)|| ≤
N−1

k=0
Σ |eN,k|∆s+1

N,k + O(∆s+1
N) = O(∆s

N) ,

where∆N =. maxk ∆N,k. Hence, the quantity

(3.6d)EtN
=.

N−1

k=0
Σ |eN,k|∆s+1

N,k

provides an estimate of the total integration error.

4.3.2 Strategies for mesh refinement

The preceding discussion suggests that it may be advantageous to consider non-uniform meshes

for the approximating problems.The non-uniform mesh would be chosen to distribute the esti-

mates of the local integration error in such away that maxk |eN,k|∆s+1
N,k is minimized. There are

two approaches for choosing an integration mesh.The first,static mesh refinement, uses the inte-

gration error evaluated at the solution, or approximate solution,§ Ni
of PNi

to producetNi+1
as a

refinement oftNi
. In the second approach,dynamic mesh refinement, the approximating problem

- 112 - Chap. 4

PN is modified to include the breakpoints of the meshtN as decision variables. Inthis way, the

optimization problem that solvesPN also adjusts the integration mesh.

We choose the first approach because it easily fits into our theory of consistent approxima-

tions and we believe it to be the more efficient approach.Before discussing static refinement in

more detail, we will describe dynamic refinement and explain why we feel that it is a less efficient

approach for ultimately obtaining solutions toP.

One method for introducing mesh breakpoints as decision variables in solving optimal con-

trol problems was given in [104]. In that paper the mesh points were allowed to move in order to

help minimize the objective function in the optimization ofPN . Howev er, it was discovered that

this led to the placement of breakpoints in a manner that reduced the objective function by allow-

ing the violation of trajectory constraints to increase between mesh points.This problem was

alleviated by constructing approximating polynomials to the state trajectories and ensuring con-

straint satisfaction for the polynomial over its whole interval of definition. In [41], Stryk notes

that there are serious convergence and conditioning problems associated with this method.Other

strategies based on equidistribution of the discretization error which avoid this problem altogether

are developed in[34,41]. Thesemethods lead to serious complication of the nonlinear program

which must be solved to obtain a solution toPN . Specifically, a large system of nonlinear con-

straints that approximately equidistributes the integration error is added to the original nonlinear

program. Thisresults in a significant increase in the computation time.

The advantage of dynamic mesh refinement is that, for a given discretization level N, the

mesh points can be placed quite accurately with respect to minimizing the integration error for

that discretization level. However, this does not mean that the solution¨ N of PN is the best

approximate solution ofP that can be obtained for a discretization level N. Furthermore, adding

so much extra computational burden in order to dynamically refine the mesh only makes sense if

only one approximating problem is to be solved. Sincewe plan to solve a sequence of approxi-

mating problemsPNi
, we can obtain meshestNi

that are almost the same as a mesh produced by

dynamic refinement simply by refining the meshes between the solution of problemsPNi
. The

reason for this is that once¨ Ni
is close tö * , the distribution of the local integration errors will

not change much.Thus, the relative sizes of tNi ,k+1 − tNi ,k will change very little once

||̈ Ni+1
− ¨ Ni

|| becomes small.

It should be noted that neither dynamic mesh refinement nor static mesh refinement will be

able to locate discontinuities in the optimal control or exit and entry points for trajectory con-

straints exactly. Nor will they be able to ensure that control and trajectory constraints are satisfied

exactly for all t ∈∈ [0, 1]. A strategy for producing solutions of very high accuracy is discussed in

the chapter on future research.

- 113 - Chap. 4

Static Mesh Refinement (Strategy 1, mo vable knots). We propose two strategies for static

mesh refinement.Both attempt to choose the mesh points in order to approximately equidis-

tribute the principal local truncation erroreN,k∆s+1
N,k, k = 0, . . ,N − 1. Thefirst strategy is based

on the algorithmNEWKNT for the repositioning of spline knot locations[63, pp. 182-184].Given

a mesh tNi
and a solution© Ni

to PNi
defined on that mesh, we seek to choose a new mesh

tNi+1
= { tNi+1,k } Ni+1

k=0 with the property that

(3.7a)|eNi+1,k|∆s+1
Ni+1,k = |eNi+1,k+1|∆s+1

Ni+1,k+1 , \/ k ∈∈ { 0, . . . ,Ni+1 −2 } ,

where∆Ni+1,k =. tNi+1,k+1 − tNi+1,k. Clearly, this is equivalent to choosing{ tNi+1,k } such that

(3.7b)|eNi+1,k|1/s+1∆Ni+1,k = |eNi+1,k+1|1/s+1∆Ni+1,k+1 .

We proceed by defining the piecewise constant functionE(t) which interpolates the values

(tNi ,k, |eNi ,k|∆s+1
Ni ,k). Thus,for t ∈∈ [tk, tk+1), E(t) = |eNi ,k|∆s+1

Ni ,k. Then, satisfying (3.7b) is equiv-

alent to choosing{ tNi+1,k } such that for eachk ∈∈ { 0, . . . ,Ni+1 −1 } ,

(3.7c)

tNi+1,k+1

tNi+1,k

∫ E(t)1/s+1dt =
1

Ni+1
∫

1

0
E(t)1/s+1dt =

1

Ni+1

Ni−1

j=0
Σ |eNi , j |

1/s+1∆Ni , j .

This problem is easily solved, onceNi+1 is specified, by constructing the continuous, monotone

increasing, piecewise linear function

(3.8a)G(ª) =. ∫
«

0
E(t)1/s+1d ª

and setting

(3.8b)tNi+1,k = G−1

k

Ni+1
G(1)

, k = 0, . . . ,Ni+1 .

To chooseNi+1 we can use the following heuristic. Since the total integration error is approxi-

mately given by

(3.9)EtNi
=.

Ni−1

k=0
Σ |eNi ,k|∆s+1

Ni ,k ≈
K

Ns
i

,

we could reduce by a factor ofFAC the total integration error without redistributing by choosing

a discretization level

(3.10a)N′ = Ni (FAC)1/s ,

where r is the smallest integer larger thanr . Since this value ofN′ does not taken into account

the benefit of redistributing the mesh, we instead use

- 114 - Chap. 4

(3.10b)Ni+1 = max { Ni , Ni

FAC

maxk { |eNi ,k|/e}

1/s

 } ,

wheree = 1
Ni Σ

N−1
k=0 |eNi ,k|.

Finally, in order to ensure that the mesh refinement strategy will produce quasi-uniform

meshes, we set

(3.11)eN,k = max { |eN,k|, maxk |eN,k|/¬ } ,

where ¬ is the constant in Definition 2.1 of quasi-uniformity, before computing the new mesh.

Also, an estimate,¬ ∆, of the effect of redistribution is computed as:

(3.12)¬ ∆ =
maxk |ek|1/s+1∆N,k

mink |ek|1/s+1∆N,k
.

The larger ¬ ∆ is, the larger the benefit received from redistribution will be.

Static Mesh Refinement (Strategy 2, fix ed knots). Our second strategy is based on the

heuristic in[105] which allows mesh points to be added or deleted, but not moved. Thus,if no

deletion occurs, the control subspaces nest,i.e. LtNi+1
⊂ LtNi

. The estimates in (3.6a) or (3.6b)

for the local truncation error are used to divide each interval [tk, tk+1] into nk subintervals. The

only subtlety is that, whenever an interval is removed, the local truncation error associated with

that interval is added to the local truncation error of the previous interval. Therefinement is per-

formed iteratively as follows:

Step 1: Compute the average local truncation error

(3.13a)e =
1

Ni

Ni−1

k=0
Σ |eNi ,k|1/s+1∆Ni ,k ,

and compute the relative local truncation errors,

(3.13b)ek =
|eNi ,k|1/s+1∆Ni ,k

e

FAC

maxk { |eNi ,k|/e}

1/s

,

where the second term, as in Strategy 1, equation (3.10b), specifies that the integration

error should decrease by a factor ofFAC.

Step 2: Choose ∈∈ (0, 1
2). Determinewhich mesh points,tk, are to be removed and add their

relative local truncation errors,ek, to the relative local truncation error, ek−1, of the pre-

vious interval. A mesh point is to be removed (in Step 4) ifek < . The following loop

implements this procedure:

- 115 - Chap. 4

for k = Ni − 1 by -1 to 2,
if ek < 0. 25

ek−1 = ek−1 + ek
ek = 0

endif
if 0. 25≤ ek < 1

ek = 1
endif

endfor

Step 3: For each k = 0, . . . ,N − 1, let nk = [ek], where [ek] is the integer nearest toek. If

n0 = 0 set n0 = 1 (so that the leftmost breakpoint will not be removed).

Step 4: Let I = { k | nk ≥ 1 } and create the new mesh

(3.14)tNi+1
= { { tNi ,k +

i∆Ni ,k

nk
} nk−1

i=0 } k ∈∈ I .

Before performing the redistribution, we set, as in Strategy 1,

(3.15)eN,k = max { |eN,k|, maxk |eN,k|/® } ,

where ® is the constant in Definition 2.1 of quasi-uniformity, in order to ensure that the mesh

refinement strategies which use these local truncation errors will produce quasi-uniform meshes.

As in Strategy 1, an estimate,® ∆, of the effect of redistribution can be computed as:

(3.16)® ∆ =
maxk |ek|1/s+1∆N,k

mink |ek|1/s+1∆N,k
.

In the program that implements this redistribution strategy (seedistrib ute in Chapter 5.7), a

mechanism has been added before Step 2 that causes mesh points to be added at or near active

trajectory constraints.Specifically, for eachk such thattN,k is at or near an active trajectory con-

straint,ek is set to

(3.17)ek ← ek + 1

Redistrib ution e xamples. The following plots demonstrate the effect and usefulness of mesh

redistribution. We hav e set ® = 50 for both redistribution strategies and have set ¯ = 1/4 for

Strategy 2. The first three plots were based on integrating the differential equations for the

Rayleigh problem with the solutionuN* ∈∈ L(2)
N of the approximating problem discretized using

RK methodA2 with N = 50. Thefirst figure, Figure 3.2a, shows the local truncation errors,

xN,k+1 − xN,k(tk+1), k = 0, . . . ,N − 1, produced by RK methodA2 before and after mesh redistri-

bution. We are actually plotting the time function

- 116 - Chap. 4

(xN,k+1 − xN,k(tk+1))Πk(t) , k = 0, . . . ,N − 1 , t ∈∈ [0, 2. 5] ,

where

Πk(t) =

î

1 , t ∈∈ [tk, tk+1)

0 , otherwise.

Notice that local truncation errors for the mesh produced by Strategy 1 are almost equidistributed.

Strategy 2 does not quite achieve equidistribution and the number of mesh intervals increased

from N = 50 toN = 64. Strategy 2 does, however, achieve nesting. Figure3.2b is a close-up look

at these local truncation after mesh redistribution. Finally, Figure 3.2c show the effect on the

solutionuN* before and after redistribution.

Before Redistribution (N=50)

Strategy 1 (N=50)

Strategy 2 (N=64)

0 0.5 1 1.5 2 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03
Change in local integration error following mesh redistribution

Fig. 3.2a: This plot shows the values of the local truncation versus time before and after mesh
redistribution.

- 117 - Chap. 4

Strategy 1 (N=50)
Strategy 2 (N=64)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
x 10

−3 Comparison of local integration error after redistribution

Fig. 3.2b: Closeup up view of the local truncation errors following the mesh redistribution by
Strategies 1 and 2.

Solution before redistribution
Solution after redistribution

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

4

5

6

7

Time

O
pt

im
al

 C
on

tro
l

Effect of mesh redistribution

Fig. 3.2c: This plot compares of solution of the Rayleigh problem before and after mesh redistri-
bution. Samenumber of points (N = 50) in both meshes.

- 118 - Chap. 4

The next table provides some quantitative results on the effect of the mesh redistribution. The

error ||uN* − u* ||2 was calculated according to (2.12) withT = 2. 5.

total integration error ||uN* − u* ||2

Before redistribution 0.1806 1.06e-1

After Strategy 1 0.0652 1.56e-2

After Strategy 2 0.0490 8.12e-3

Table 3.3: Integration error and solution error before and after mesh redistribution.

Note that the Strategy 1 results in almost a seven-fold decrease in the solution error without

increasing the size of the mesh.For Strategy 2, the error is reduced by a factor of 13 with only a

small increase in the number of mesh points.

As another example, we show the solutionuN* ∈∈ L(2)
tN

of problem Bang before and after

mesh redistribution using Strategy 1. Again, we use RK methodA2. In this case there are

N = 20 intervals. Thecircles in Figure 3.4 indicate where the mesh points occur.

0 10 20 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

time

Control soln. before redistribution

0 10 20 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

time

Control soln. after redistribution

Fig. 3.4: Comparison of solution for problem Bang before and after mesh redistribution. Same
number of points (N = 20) in both meshes.The optimal control is a bang-bang solution.

The next table provides quantitative results on the effect of redistribution. Again, ||uN* − u* ||2 is

computed according to (2.12), this time withT = T* = 30.

- 119 - Chap. 4

total integration error ||uN* − u* ||2

Before redistribution 8.44e-1 1.251

After Strategy 1 7.098e-3 0.465

Table 3.5: Integration error and solution error before and after mesh redistribution.

4.4 ESTIMATION OF SOLUTION ERROR

In this section we consider the sequence{ ° N } of approximate solutions computed for the

approximating problems{ PN } . For eachN, we would like to be able to determine the solution

error ||° N − ° * ||H2
. We will provide a formula for estimating this error that is based on heuristics.

For simplicity we will consider problems of the form

(4.1a)± ∈∈ H
min { f (°) | g(°) = 0 } ,P

whereg : H → IRq with H =. IRn × U andU, the feasible control set, is given by

(4.1b)U =. { u ∈∈ Lm
∞,2[0, 1] | u(t) ∈∈ U for t ∈∈ [0, 1] a.e. }

(4.1c)U =. { v ∈∈ IRm | ||v|| ≤ ² max}

with ² max sufficiently large so that, for all iterates,u(t) is in the interior ofU almost everywhere

in [0,1]. Effectively then, there are no control constraints.The results are easily extended to

problems with inequality endpoint and trajectory constraints.The extension to problems with

control bounds is presented following the current discussion.

A useful quantity to consider for constrained problems is the augmented Lagrangian

(4.2a)Lc(° , ³) =. L(° , ³) +
c

2
g(°)T g(°) ,

where

(4.2b)L(° , ³) =. f (°) + ³ T g(°)

is the Lagrangian with³ a vector of multipliers.

The error estimate we derive below depends on a positive-definiteness property of the Hes-

sian of the augmented Lagrangian.This property is associated with solution points that satisfy

second-order sufficiency conditions for local optimality. Second-order sufficiency conditions are

easily stated for finite dimensional optimization problems but are significantly more difficult to

derive for optimal control problems.For instance, the proofs for the sufficiency conditions given

- 120 - Chap. 4

in [3,106]are incorrect.In the statement of the following theorem, the required Fre´chet differen-

tiability of f (⋅) and g(⋅) with respect toH is established in[58]. A proof of Theorem 4.1 can be

found in[107, Theorem 2 (p. 187)].

Theorem 4.1 (Second-Order Sufficiency). Suppose thatf (⋅) and g(⋅) are twice continuously

Fréchet differentiable (so thatLc(⋅, ´) is). Assumethat atµ * ∈∈ H,

(4.3a)g(µ *) = 0 ,

and there exists a ´ * ∈∈ IRq and a scalar¶ 1 > 0 such that

(4.3b)∇ · L(µ * , ´ *) = 0 ,

(4.3c)/
\ ¸ µ , ∇ 2· · L(µ * , ´ *) ¸ µ \

/ H2
≥ ¶ 1||̧ µ ||2H2

for all ¸ µ ∈∈ H2 such thatg· (µ *) ¸ µ = 0. Then µ * is a local minimizer forP, i.e., there exists a

¶ 2 > 0 and a corresponding¸ 2 > 0 such that

(4.3d)f (µ) − f (µ *) ≥ 1
2 ¶ 2||µ − µ * ||2H2

for all µ ∈∈ H such that ||µ − µ * ||H2
≤ ¸ 2.

The proof of the following Proposition concerning the Hessian of the augmented Lagrangian is

based on the finite-dimensional result given in [89, Lemma 1.25 (p. 68)].

Proposition 4.2. Suppose thatf (⋅) and g(⋅) are twice continuously Fre´chet differentiable and

that µ * ∈∈ H is a point satisfying the second-order sufficiency conditions for problemP (without

control constraints) in Theorem 4.1.Let ´ * ∈∈ IRq be such that (4.3b) holds.Then there exists

scalars¶ > 0 andc ∈∈ (0,∞) such that for allc ≥ c

(4.4a)/
\ ¸ µ , ∇ 2· · Lc(µ * , ´ *) ¸ µ \

/ 2 ≥ ¶ ||̧ µ ||2H2
, \/ ¹»º ∈∈ H2 .

Proof. Let H =. ∇ 2· · L(µ * , ´ *) andG =. g· (µ *). Sinceg(µ *) = 0, we have that for all ¸ µ ∈∈ H2,

(4.4b)/
\ ¸ µ , ∇ 2· · Lc(µ * , ´ *) ¸ µ \

/ H2
= /

\ ¸ µ , H ¸ µ \
/ H2

+ c||Ģ µ ||2H2
.

Suppose that there is noc such that (4.4a) holds.Then, for eachk ∈∈ IN and any ¶ > 0, there

exists ¸ µ k ∈∈ H2 such that ||̧ µ k||H2
= 1 and

(4.4c)/
\ ¸ µ k, H ¸ µ k

\
/ H2

+ k||G ¸ µ k||2H2
≤ ¶ .

Choose¶ = ¶ 1/4 where¶ 1 is the positive scalar from Theorem 4.1.Taking the limit superior,

(4.4d)
k →∞
lim /

\ ¸ µ k, H ¸ µ k
\
/+ k||G ¸ µ k||22 ≤

¶ 1

4
.

Since ||G ¸ µ k|| ≥ 0, (4.4d) implies that ||Ģ µ k|| → 0 as k → ∞. Next, since Lc(⋅, ´ *) is twice

- 121 - Chap. 4

Fréchet differentiable,∇ 2¼ ¼ Lc(½ * , ¾ *) is abounded bi-linear operator. Thus, it follows from (4.3c)

and the fact that ||G¿�½ k|| → 0 as k → ∞ that there exist a k such that, for allk ≥ k,

/
\ ¿À½ k, H ¿À½ k

\
/ ≥ Á 1

2 ||¿À½ k||2 = Á 1
2 . But this contradicts (4.4d).

We now proceed with a heuristic derivation of an estimate for ||½ N − ½ * ||H2
assuming there

are no control bounds.In what follows, all of the norms areH2 norms. Thefollowing assump-

tion is needed for our derivation.

Assumption 4.3.

(a) L(⋅, ¾) is twice continuously differentiable.

(b) ½ * ∈∈ H is a local minimizer forP and there exists scalarsc > 0 and Â > 0 such that

(4.5a)/
\ ¿À½ , ∇ 2¼ ¼ Lc(½ * , ¾ *) ¿À½ \

/ H2
≥ Â ||¿À½ ||2H2

, \/ Ã»Ä ∈∈ H2 .

(c) { ½ N } ∞
N=0 is a sequence such that½ N ∈∈ H and ½ N → ½ * asN → ∞.

Note that that this assumption doesnot specify thatg(½ N) = 0; generally, g(½ N) ≠ 0 even if ½ N is

a solution ofPN .

Now, let ¿À½ N =. ½ N − ½ * . Expanding∇ ¼ Lc(½ N , ¾ *) to first order around½ * and using the

fact that∇ ¼ Lc(½ * , ¾ *) = 0, we get

(4.6)∇ ¼ Lc(½ N) = ∫
1

0
∇ 2¼ ¼ Lc(½ * + s¿À½ N , ¾ *) ¿À½ N ds .

For convenience, define

(4.7a)Hc(¿À½ N) =. ∫
1

0
∇ 2¼ ¼ Lc(½ * + s¿�½ N , ¾ *)ds

so that (4.6) can be written

(4.7b)∇ ¼ Lc(½ N) = H c(¿�½ N) ¿À½ N .

From (4.7b), we have for any ¿À½ N ∈∈ H2,

(4.8a)/
\ ∇ ¼ Lc(½ N , ¾ *), ¿À½ N

\
/ = /

\ ¿À½ N , Hc(¿À½ N) ¿À½ N
\
/ =

1

KN
||¿À½ N ||2 ,

for someKN . We will show that KN is finite and bounded away from zero. From the continuity

of ∇ 2¼ ¼ Lc(⋅, ¾ *), the fact that ¿À½ N → 0 as N → ∞, and Assumption 4.3(b), there exists an

N1 < ∞ such that forN ≥ N1,

(4.8b)/
\ ¿À½ N , Hc(¿À½ N) ¿À½ N

\
/ ≥ 1

2
/
\ ¿À½ N , ∇ 2¼ ¼ Lc(½ * , ¾ *) ¿À½ N

\
/ ≥

Â
2

||¿�½ N ||2 .

Comparing (4.8a) and (4.8b), we see thatKN ≤ 2

Á
< ∞ (since Â > 0) for all N ≥ N1. Also, since

- 122 - Chap. 4

∇ 2Å Å Lc(Æ * , Ç *) is a bounded bi-linear operator, there exists anM < ∞ such that

(4.8c)/
\ È Æ , ∇ 2Å Å Lc(Æ * , Ç *) È Æ \

/ 2 ≤ M ||È Æ ||2H2
, \/ É»Ê ∈∈ H2 .

Hence, there exists anN2 such that, for allN ≥ N2, 1
KN

≤ 2M . Thus,

(4.8d)
1

2M
≤ KN ≤

2
Ë , \/ N ≥ max { N1, N2 } ,

and from (4.8a),

(4.8e)||È Æ N ||2 = K N
/
\ ∇ Å Lc(Æ N), È Æ N

\
/ ≤ KN ||∇ Å Lc(Æ N , Ç *)||||È Æ N || .

This implies that, forN ≥ max { N1, N2 } ,

(4.9)||È Æ N || ≤ KN ||∇ Å Lc(Æ N , Ç *)|| .

At this point, we could try to estimateM , use 1/2M in (4.8d) as a lower bound forKN and use

(4.9) as our estimate.However, this would lead to a very conservative estimate. Instead,we will

attempt to estimateKN directly using two solutions, Æ Ni
and Æ Ni+1

computed forNi ≠ Ni+1. We

have È Æ Ni+1
= Æ Ni+1

− Æ Ni
+ È Æ Ni

and È Æ Ni
= Æ Ni

− Æ Ni+1
+ È Æ Ni+1

. Hence

(4.10a)||È Æ Ni+1
||− ||È Æ Ni

|| ≤ ||Æ Ni+1
− Æ Ni

||

and

(4.10b)||È Æ Ni
||− ||È Æ Ni+1

|| ≤ ||Æ Ni+1
− Æ Ni

|| .

We conclude that

(4.10c)|||È Æ Ni+1
||− ||È Æ Ni

||| ≤ ||Æ Ni+1
− Æ Ni

|| .

Proceeding heuristically, we are going to assume that forN sufficiently large there is aK < ∞
such that we can replace (4.9) with

(4.11a)||È Æ N || ≈ K ||∇ Å Lc(Æ N , Ç *)|| .

Then, from (4.10c) and (4.11a), we have

(4.11b)K |||∇ Å Lc(Æ Ni+1
, Ç *)|| − ||∇ Å Lc(Æ Ni

, Ç *)||| ≤ ||Æ Ni+1
− Æ Ni

|| ,

from which we estimate

(4.12)K ≤
||Æ Ni+1

− Æ Ni
||

| ||∇ Å Lc(Æ Ni+1
, Ç *)|| − ||∇ Å Lc(Æ Ni

, Ç *)|| |
.

Substituting this bound back into (4.11a) we get

- 123 - Chap. 4

(4.13a)||Ì Ni+1
− Ì * || ≤

||Ì Ni+1
− Ì Ni

||||∇ Í Lc(Ì Ni+1
, Î *)||

| ||∇ Í Lc(Ì Ni+1
, Î *)|| − ||∇ Í Lc(Ì Ni

, Î *)|||
.

In this result, neither the the Lagrange multipliersÎ * nor the minimum penalty parameterc are

known a priori . So, for the purpose of implementation, we useLc(Ì N , Î N) in place ofLc(Ì N , Î *)

where Î N is the vector of Lagrange multiplier estimates obtained from the solution ofPN . Also,

instead of a single penalty parameterc, we use separate penalties for each constraint.For the i-th

constraint, we choose

(4.13b)ci = | Î i
N | , i = 1, . . . ,q .

These values forci are used because, with this choice, the functionf (Ì) + c|gi (Ì)| has an uncon-

strained minimum atÌ * if c ≥ Σi ci with ci given in (4.13b), see.[89, Proposition 4.1] This, of

course, does not imply that with this choice forci the augmented Lagrangian has an uncon-

strained minimum atÌ * . But (4.13b) seemed to work well in our limited experiments. Arigorous

choice for theci is an open question at this point.

Extension to Pr oblems with Contr ol Bounds. In the presence of control bounds, expression

(4.13a) is not useful because(i) requiring Assumption 4.3(b) to hold may be too much to ask and

(ii) the expansion in (4.6) is incorrect since∇ Í Í Lc(Ì * , Î *) ≠ 0. However, we can easily produce

a modification to handle control bounds.For simplicity of presentation, we will only deal with

single input systems and problems with fixed initial conditions.The extension to problems with

vector inputs and free initial conditions is straightforward.

Consider a problem of the form

u ∈∈ U
min { f (u) | g(u) = 0 } ,P

where f : U → IR, g : U → IRq are defined as

(4.14a)f (u) =. Ï o(xu(1)) ,

(4.14b)gÐ (u) =. Ï Ðc (xu(1)) , Ñ = 1, . . . ,q ,

wherexu(⋅) is the solution of

(4.14c)ẋ = h(x, u) , x(0) = Ò , t ∈∈ [0, 1] ,

and the feasible control set is defined as

(4.14d)U =. { u ∈∈ L1
∞,2[0, 1] | bl (t) ≤ u(t) ≤ bu(t) , \/ t ∈∈ [0, 1] }

wherebl : [0, 1] → IR and bu : [0, 1] → IR are functions such that−∞ < bl (t) < bu(t) < ∞ for

- 124 - Chap. 4

all t ∈∈ [0, 1].

There are several versions of Kuhn-Tucker like sufficiency conditions for problems with

control bounds which can be found in[108-113]. Theresults provided in[109] are the most use-

ful for our purposes.The statement of the second-order sufficiency conditions requires the

Hamiltonian which, for problemP, is defined as

(4.15a)H(x, p, u) =. pT h(x, u) ,

where, withu ∈∈ U and Ó ∈∈ IRq and the adjoint variablepu,Ô (t), t ∈∈ [0, 1], is the solution of

(4.15b)
d

dt
p(t) = − Hx(xu(t), p(t), u(t))T ; p(1) = ∇ Õ o(xu(1)) + Ó T ∇ Õ c(x

u(1)) .

With this definition,∇ uL(u, Ó)(t) = H u(xu(t), pu,Ô (t), u(t)), t ∈∈ [0, 1] (see [109,Note 4.1]). We

also need to define the quantity

 (Ó , Ö\× Ø , Ù) =E»Ú Û ÜÞÝ (ß (Ù), à (Ù), Ö (Ù)), Ø − Ö (Ù) ÛÚ

(4.15c)+ 1
2

/
\ v − u(t), Huu(xu(t), p* (t), u(t))(v − u(t)) \

/ .

Given a solution u* of problemP, define the set

(4.15d)A =. { t ∈∈ [0, 1] | u* (t) = b l (t) or u* (t) = bu(t) } .

The following theorem is a special case of[109, Theorem 4.2].

Theorem 4.4 (Second-Order Sufficiency with Control Bounds). Suppose thatf (⋅) and g(⋅)

are twice continuously Fre´chet differentiable (so thatLc(⋅, Ó) is). Assumethat the following con-

ditions hold atu* ∈∈ U:

(4.16a)g(u*) = 0 ,

there exists Ó * ∈∈ IRq such that

(4.16b)∇ L(u* , Ó *)(t) = 0 if t /∈ A ,

(4.16c)∇ L(u* , Ó *)(t) > 0 if u* (t) = b l (t) ,

(4.16d)∇ L(u* , Ó *)(t) < 0 if u* (t) = bu(t) ,

holds fort ∈∈ [0, 1] a.e., and there exists scalarsá 1 > 0 and á 2 > 0, such that

(4.16e)/
\ â u, ∇ 2L(u* , Ó *) â u \

/ 2 ≥ á 1||â u||22

for all for all â u ∈∈ L∞,2[0, 1] such that â u(t) = 0 for t ∈∈ A, and gu(u*) â u = 0, and, with

 (Ó * , u* ; v) as defined in (4.15c),

- 125 - Chap. 4

(4.16f) (ã * , u* ; v, t) ≥ 1
2 ä 2||v − u* (t)||22 , \/ bl (t) ≤ v ≤ bu(t)

holds fort ∈∈ [0, 1] a.e.. Thenu* is a local minimizer forP, i.e., there exists aä 3 > 0 and a corre-

spondingå 3 > 0 such that

(4.16g)f (u) − f (u*) ≥ 1
2 ä 3||u − u* ||22

for all u ∈∈ U such thatg(u) = 0 and ||u − u* ||2 ≤ å 3.

Remark 4.5 In [109], Dunn presents a set of conditions which ensure thatf (⋅) and g(⋅) are

twice continuously Fre´chet differentiable. Oneof those conditions,

(4.17a)||v−u||2→0
lim ||S(v) − S(u)||∞ = 0 ,

whereS(u)(t) =. Huu(x
u(t), pu,æ (t), u(t)), can only hold if the Hamiltonian isu-quadratic (i.e., has

no terms higher than quadratic inu). However, Fréchet differentiability relative to the setU was

established in[58] without condition (4.3f).

Remark 4.6. Condition (4.16f), which does not have a counterpart for finite-dimensional non-

linear programs is, locally, a strengthening of the Pontryagin Minimum principle,

(4.17b)H(x* (t), p* (t), u* (t)) =
u ∈∈ U
min H(x* (t), p* (t), v) , \/ t ∈∈ [0, 1] .

Also, condition (4.16f) can be replaced by the locally stronger Legendre-Clebsch condition

(4.17c)/
\ v, Huu(x* (t), p* (t), u* (t))v \

/ ≥ ä 2||v||22 , \/ v ∈∈ IRm , a. e. t ∈∈ [0, 1] .

Proposition 4.7. Suppose thatf (⋅) and g(⋅) are twice continuously , thatLc(⋅, ã) is twice con-

tinuously Fre´chet differentiable and thatu* ∈∈ U is a point satisfying second-order sufficiency

conditions for problemP with control constraintsbl (t) ≤ u(t) ≤ bu(t) for almost allt ∈∈ [0, 1].

Then there exists ã * ∈∈ IRq such that equations (4.16b,c,d) hold and there exists scalarsä > 0 and

c ∈∈ (0,∞) such that for allc ≥ c

(4.18)/
\ å u, ∇ 2Lc(u* , ã *) å u \

/ L2
≥ ä ||å u||2L2

, \/ ç u ∈∈ L∞,2[0, 1] with å u(t) = 0 \/ t ∈∈ A .

We now assume that{ uN } i s a sequence inU such thatuN → u* ∈∈ U whereu* is a solu-

tion of P for which there exists aä > 0 andc < ∞ such that (4.18) holds for allc ≥ c. Condition

(4.18) allows us to make use of the first order expansion of∇ Lc(uN , ã *) aroundu* with perturba-

tions å u restricted such thatå u(t) = 0 for all t ∈∈ A. Let I =. { t ∈∈ [0, 1] | t /∈ A } . For any N,

let uN ∈∈ U be a solution (or approximate solution) toPN and define

- 126 - Chap. 4

(4.19a)
è

uN =.

î

uN(t) − u* (t)

0

if t ∈∈ I

if t ∈∈ A
.

Then,

(4.19b)∇ Lc(u* +
è

uN , é *) = ∫
1

0
∇ 2Lc(u* + s

è
uN , é *)

è
uN ds .

Now, using the same reasoning that led to equation (4.13), we have

(4.20)||
è

uNi+1
|| ≤

||uNi+1
− uNi

||I ||∇ Lc(uNi+1
, é *)||I

| ||∇ Lc(uNi+1
, é *)||I − ||∇ Lc(uNi

, é *)||I |
,

where we have used the notation

||u||2I = ∫
I
u(t)2dt .

Next, sinceI ∪ A = [0, 1], we have for any N

(4.21)||uN − u* ||2 = ||u* − uN ||2I + ||u* − uN ||2A .

In expressions (4.20) and (4.21), the subsetI and A are unknown. To proceed, we must compute

an approximation Î N to I . We can obtain this approximation using the index set

I N =. { k ∈∈ { 0, . . . ,N } | bl (t) < uN(tk) < bu(t) } corresponding to the unconstrained portion of

the numerical solutionuN for the approximating problemPN . Let

(4.22)Î N =
k ∈∈ I N

∪ [tN,k−1, tN,k+1] ,

where we treattN,−1 = t N,0 and tN,N+1 = t N,N . Then let ÂN = [0, 1] ∼ Î N . With this construc-

tion, we can assume that

(4.23a)||uN − u* ||
Â N

≈ 0

since, if N is large enough, the setÂN ≈ A, and hence,uN(t) = u* (t) for t ∈∈ ÂN . Thus, with

N = Ni+1, (4.21) becomes

(4.23b)||uNi+1
− u* ||2 ≈ ||u* − uNi+1

||2I = ||
è

uNi+1
||2 .

where
è

uNi+1 is defined by (4.19a).Finally, since Î N is only an estimate ofI , instead of using

(4.20), we estimate the total error with a more conservative estimate (and will replaceu with ê
since this formula works in the more general case ofH =. IRn ×U) to get

- 127 - Chap. 4

(4.24)||ë Ni+1
− ë * || ≈ ||ë Ni+1

− ë * ||I ≤
||ë Ni+1

− ë Ni
||||∇ Lc(ë Ni+1

, ì *)||
Î Ni+1

| ||∇ Lc(ë Ni+1
, ì *)||

Î Ni+1

− ||∇ Lc(ë Ni
, ì *)||

Î Ni

|
,

where ||ë ||2I =. ||í ||2 + ||u||2I . As in (4.13a), we useLc(ë N , ì N) in place of Lc(ë N , ì *), where ì N is

the vector of Lagrange multipliers obtained from the solution ofPN . Also, instead of a single

penalty parameterc, we use separate penalties for each constraint.For the i-th constraint, we

chooseci = | ì i
N | as in (4.13b).

Numerical Examples. To demonstrate the usefulness of formula (4.22), we have computed

this error estimate for several optimal control problems using the numerical solutions from two

different meshes,tN1
and tN2

. To compute the required function space norms we used a variable

step-size integration algorithm with its local error tolerance set to

î
local = min { max { EtN

/ 1000, 10−12 } , 10−4 } ,

whereEtN
is the global error estimate given by (3.6d) for the fixed integration routine that was

used to discretize the optimal control problem.

The following table compares the estimate of the error ||ë * − ë N2
* || with the actual error. The

norm used in these computations is defined forë = (í , u) by

(4.25)||ë ||2 =. ||í ||22 + ∫
T

0
||u(t)||22dt .

For each problem, we constructed the approximating problems using both(i) linear splines with

RK methodA2 and (ii) quadratic splines with RK methodA4. For the first four problems, the

meshes were uniformly spaced.For the last problemtN1
was uniformly spaced andtN2

was deter-

mined by redistributing tN1
with mesh redistribution Strategy 1. The problems used in this table

are described in Appendix B.The quantities in Table 4.1 marked with a* were computed using

approximations ofë * obtained by solving the discretized problem withN = 1000. Thelast prob-

lem has control bounds so we did not solve it with quadratic splines (see discussion of spline

order selection for constrained problems).The results in Table 4.1 show that the estimates pro-

- 128 - Chap. 4

vided by (4.22) are remarkably good.

A2 , ï = 2 A4 , ï = 3

Problem N1 N2 Estimate Actual Estimate Actual

LQR (T = 1) 10 20 3.6677e-4 3.6008e-4 1.5721e-6 1.5801e-6

Switch (T = 1) 40 80 0.0148 0.0322 0.01235 0.0229

Rayleigh (T = 2. 5) 50 80 0.0410 0.0335* 0.0021 0.0020*

Constr. Rayleigh 50 80 0.0369 0.0355* 0.0023 0.0021*

Bang (T = 30) 20 20 0.4737 0.4653

Table 4.1: A comparison of the estimate for the error ||ð * − ð N2
* || produced by formula (4.22)

and the actual error. N1 and N2 are the discretization levels of the two meshes for which solu-
tions were computed.The estimates and actual error are given for solutions produced using RK
methodA2 with linear splines and RK methodA4 with quadratic splines (except for Bang which
has control constraints).For the last problem, Bang,N1 = N2 but the meshtN1

is a uniform mesh
andtN2

is a non-uniform redistribution of tN1
.

4.5 SINGULAR CONTROL PROBLEMS AND THE PIECEWISE DERIVATIVE VARIA-

TION OF THE CONTROL

It is quite possible for an optimal control problem to not satisfy second order sufficiency

conditions as needed in Section 4.A common practical situation in which this occurs are prob-

lems called singular control problems.For the purpose of illustration, consider the optimal con-

trol problem

u ∈∈ U
min { f (u) | g(u) = 0 } ,P

where f (u) = ñ o(xu(1)) ∈∈ IR, g(u) = ñ c(x
u(1)) ∈∈ IRq, xu(t), t ∈∈ [0, 1], is the solution of

(5.1a)ẋ = h(x, u) ; x(0) = ò .

andU =. { u ∈∈ Lm
∞,2[0, 1] | u(t) ∈∈ U , \/ t ∈∈ [0, 1] } . We assume thatf (⋅), g(⋅) and h(⋅) are twice

continuously differentiable. For this problem, we define the Hamiltonian as

(5.1b)H(x, p, u) =. pT h(x, u) .

For u ∈∈ U and ó ∈∈ IRq, let the adjoint variablepu,ô (t), t ∈∈ [0, 1], be the solution of

(5.1c)
d

dt
p(t) = − Hx(xu(t), p(t), u(t))T ; p(1) = ∇ ñ o(xu(1)) + ó T ∇ ñ c(x

u(1)) .

If u* is a local solution of problemP, then the following condition (Pontryagin’s minimum

- 129 - Chap. 4

principle, see[1]) holds for someõ * ∈∈ IRq:

(5.1d)u* (t) = arg
u ∈∈ U
min H(x* (t), p* (t), u) , \/ t ∈∈ [0, 1] ,

wherex* =. xu* and p* =. pu* ,ö * . At this point, we assume that the setU does not includecontrol

constraints,i.e., U = { v ∈∈ IRm | ||v|| ≤ ÷ max} w ith ÷ max sufficiently large that the values ofu(t)

always lie in the interior ofU . Then, in addition to (5.1d), theLegendre-Clebsch condition must

hold at a solution:

(5.1e)Huu(x* (t), p* (t), u* (t)) ≥ 0 , t ∈∈ [0, 1] .

Definition 5.1. An extremal arc, (x* , p* , u*), is a triple that satisfies the necessary conditions

(5.1a,b,c,d,e) for optimality. An extremal arc for problemP without control constraints is said to

be singular if Huu(x* (t), p* (t), u* (t)) is singular for any t ∈∈ [0, 1]. Any interval of an extremal

arc on whichHuu(x* (t), p* (t), u* (t)) is singular is called asingular sub-arc. If (x* , p* , u*) is sin-

gular, thenu* is called asingular control. An optimal control problem that has singular extremal

arcs is called asingular optimal control problem.

The contrapositive of the following proposition (which is proved in [111,Lemma 2] for a more

general setting that includes control constraints; also see Notes 4.1 and 4.2 in[109]) indicates

that for a singular control, the Hessian of the Lagrangian for problemP is not strongly positive.

Proposition 5.2. Let L(u, õ) = f (u) + õ T g(u) be the Lagrangian for problemP. Let u* be a

stationary point forP and let õ * ∈∈ IRq be the Lagrange multipliers associated with the constraint

g(u*) = 0. If there exists aø > 0 such that

(5.2a)/
\ ù u, ∇ uL(u* , õ *) ù u \

/ 2 ≥ ø ||ù u||22

for all ù u ∈∈ Lm
∞,2[0, 1] such thatu* + ù u ∈∈ U andgu(u*) ù u = 0, then

(5.2b)Huu(x* (t), p* (t), u* (t)) ≥ ø , \/ t ∈∈ [0, 1] .

Singular arcs occur most commonly when the Hamiltonian is linear in one or more of the

components of u. Then u* is always a singular control. Suppose that

H(x, p, u) = H
∼

1(x, p) + H
∼

2(x, p)u. In this case, when there are no control bounds (or in regions

where the control bounds are inactive), it follows from (5.1d) that a necessary condition foru* to

be extremal is

(5.3)Hu(x* (t), p* (t), u* (t)) = H
∼

2(x* (t), p* (t)) = 0 , \/ t ∈∈ [0, 1] .

It is clear that, in this case, not only isu* a singular control, but Pontryagin’s minimum principle

- 130 - Chap. 4

(because of equation (5.3)) provides no information about the value of the optimal control.If u*

is to be obtained from the solution of the two-point boundary value problem defined by (5.1a),

(5.1c) and (5.3),i.e. by the so-called indirect method[5,114,115], then additional conditions on

u* are needed.Such conditions are available as generalized necessary and sufficient conditions

(in particular, generalizations of (5.1d,e) involving time derivatives of Hu), see. [3,116-118]

For problems that have control constraints, (5.1e) is not a necessary condition and therefore

Definition 5.1 is not useful.In the case thatH(x, p, u) = H
∼

1(x, p) + H
∼

2(x, p)u, the problem is

singular if H
∼

2(x(t), p(t)), the so-called switching function, is zero for any non-zero interval of

time. Onsuch an interval, it is clear that the Pontryagin minimum principle, equation (5.1d),

gives no information about the optimal control since the Hamiltonian does not involve u.

If u* is a singular control, we have from Proposition 5.2 that the Hessian of the Lagrangian

at u* projected onto the subspace{ ú u ∈∈ Lm
∞,2[0, 1] | gu(u*) ú u = 0 } is singular. Thus, from the

Taylor expansion of the Lagrangian we see that, on singular arcs, small perturbations in the con-

trol have only fourth†, or higher, order (very small) effects on the projected Hessian of the

Lagrangian. Singularityof problemP will manifest itself as singularity or near-singularity in the

approximating problemsPN for N sufficiently large. Froma computational point of view, singu-

larity of the Hessian can inhibit superlinear convergence of mathematical programming algo-

rithms that rely on second order information.

Our primary concern, however, is that we have observed, as have other authors (for

instance [119]), that the numerical solutionsuN(⋅) of singular optimal control problems can

exhibit spurious oscillations along singular sub-arcs that are artifacts of the numerical method

rather than being an approximation to the solution ofP. This seems to be especially true when

trajectory constraints are active on singular sub-arcs.When spurious oscillations occur in the

solutionsuN of the approximating problems, the sequence{ uN } may not have any accumula-

tion points. In other words, if the oscillations persist asN → ∞, the sequence of solutions will

not converge. Besidespreventing convergence, these oscillations also prevent useful estimates of

||û Ni+1
− û * || obtained from (4.13) or (4.22).This is because the oscillations on singular sub-arcs

are erratic and prevent the quantity ||uNi
− uNi+1

|| from converging to zero. We believe that these

spurious oscillations appear due to the accumulation of numerical errors which, on the singular

sub-arcs, have very little effect on the Lagrangian because of the singularity of its Hessian.The

reason this problem appears when trajectory constraints are active may have to do with the fact

that the optimization algorithm chooses control iterates that cause the trajectory to follow the

† On an extremal arc, the third variation is necessarily zero with respect to any perturbation in the null-space of the Hessian.
Otherwise,u* would not be a local solution.

- 131 - Chap. 4

constraint over the active region. It may be ‘‘easier’’ to accomplish this using an oscillatory con-

trol.

Numerical Method f or Solving Singular Contr ol pr oblems.

We propose here a modification to the approximating problems that reduces the numerical diffi-

culties associated with singular control problems.Our modification involves adding to the objec-

tive function a penalty on the variation of the control derivative. The only other method

(see [116,120]) that has been proposed for solving singular optimal control problems involves

adding the termü ||u||2Q =. ü ∫
1

0
u(t)TQu(t) dt, whereQ is positive definite andü is a positive scalar,

to the cost function.With this additional term, the Hamiltonian becomes, withH being the

Hamiltonian of the unmodified problem,

(5.4a)H ý (x(t), p(t), u(t)) = H (x(t), p(t), u(t)) + ü u(t)TQu(t) , t ∈∈ [0, 1] .

Hence, assuming that the minimum eigenvalue of Huu(x(⋅), p(⋅), u(⋅)) is bounded below, there

exists anü > 0 such that

(5.4b)Hý uu(x(t), p(t), u(t)) = Huu(x(t), p(t), u(t)) + ü Q > 0 .

This method has some numerical drawbacks as discussed in[121]. Onedifficulty is that adding

the termü ||u||2Q is a brute-force way to eliminate the singularity ofHuu. In order to get a reason-

able solution with this approach,ü must be driven to zero. Butthis causes the problem to become

singular again.

The method we propose for handling singular optimal control problems is motivated as a

direct approach to preventing the erratic oscillations that can appear in numerical solutions.It has

the property that, as the discretization level N → ∞, the solutions of the approximating problems

converge to solutions of the original problem.At the same time, our method does not cause the

approximating problems to become increasingly singular asN → ∞. For simplicity of presenta-

tion, we will only discuss single-input systems but the ideas are easily extended to multiple-input

systems. Also,the treatment is developed for second order splines (þ = 2). Theapplication of

these results to first order splines is taken by formally settingþ = 1 in the given formulas. We do

not consider higher order splines because(a) we do not recommend using higher-order splines for

control and trajectory constrained problems in general, and(b) the smoothness of higher-order

splines tends to automatically prevent spurious oscillations in the numerical solution.

The total variation of a functionu : [0, 1] → IR is defined as

- 132 - Chap. 4

(5.5a)Var[0,1](u) =.
N

sup
N−1

k=0
Σ |u(tk+1) − u(tk)| ,

where, for each N, the supremum is taken over all sequence { tk

N
} k=0 such that

0 = t 0 < t1 < . . . < tN−1 < tN = 1. If Var[0,1](u) < ∞, thenu is said to be ofbounded variation.

The space of all functionsu of bounded variations is denoted byBV. Note that, ifu ∈∈ L(2)
tN

, then

(5.5b)Var[0,1](u) =
N

k=1
Σ |u(tk+1) − u(tk)| .

In order to prove epi-converge of the approximating problems, constructed below, to the original

problem, the space of controls will have to be restricted to those of bounded variation. Hence,we

define the original problem as

(5.6a)ÿ ∈∈ H
min { � o(�) | � c(�) ≤ 0 } ,P

whereH =. IRn × U and

(5.6b)U =. { u ∈∈ BV | u(t) ∈∈ U , \/ t ∈∈ [0, 1] }

with U ⊂ B(0, � max) a compact, convex set. We note thatBV ⊂ L1
∞,2[0, 1], so this new defini-

tion is a restriction on the set of controls that we had previously used.

If u is of bounded variation, then its derivative u̇(⋅) exists almost everywhere. Unfortu-

nately, the fact that the derivative does not exist at every point prevents us from being able to

compute the total variation ofu̇ for all u ∈∈ BV. Howev er, for u ∈∈ L(�)
tN

we can define thepiece-

wise derivative variationof the control as

(5.7a)V
•
artN

(u) =.
N+� −3

k=1
Σ |sk+1 − sk| ,

where

(5.7b)sk =
u(tk) − u(tk−1)

∆N,k
, k = 1, . . . ,N + � − 2 ,

where∆N,k =. tN,k+1 − tN,k. Note that for second order splines (� = 2), sk is the slope ofu(t) on

the interval t ∈∈ [tk, tk+1] and u(tk) = � k+1, where { � k } N+1
k=1 are the spline coefficients ofu. So,

in what follows, we will use the notationuk =. � k = u(tk−1) for k = 1, . . . ,N + 1. Notethat this is

different than our notation in Chapter 2 where we haduk = (uk,1, . . . ,uk,r) for k = 0, . . . ,N − 1.

To deal with the non-differentiability of V
•
artN

(⋅) we define the modified approximating

problems as

- 133 - Chap. 4

(5.8a)� = (� ,u) ∈∈ H(r)
N

min { � o,N(�) + cNV
•
ar2

tN
u | � c,N(�) ≤ 0 } ,PN,c

where

(5.8b)V
•
ar2

tN
(u) =. 1

2

N+	 −3

k=1
Σ |sk+1 − sk|2

(5.8c)cN =
c

(N +
 − 3)N2
.

In (5.8c),c ≥ 0 is a small number supplied by the user, N +
 − 3 is the number of terms in the

summation in (5.8b) and theN2 roughly cancels the∆2
N,k terms in the definition ofs2

k (if the mesh

is uniform then∆2
N,k = 1 / N2). TheparametercN goes to zero asN → ∞ fast enough to ensure

thatcNV
•
ar2

tN
(u) stays bounded asN → ∞ (as long as the meshes are quasi-uniform).To wit, we

have from (5.7b) and (5.8b) that for any u ∈∈ U(2)
N ⊂ L(2)

tN
,

cNV
•
ar2

tN
(u) =

c

2(N +
 − 3)N2

N+	 −3

k=1
Σ

uk+2 − uk+1

∆N,k+1
−

uk+1 − uk

∆N,k

2

≤
c(� N)2

2(N +
 − 3)N2

N+	 −3

k=1
Σ |uk+2 − uk+1|2 + |uk+1 − uk|2

≤
c� 2

2(N +
 − 3)

N+	 −3

k=1
Σ 8
 2

max

(5.9)= 4c(�
 max)
2 ,

where we have used the fact that(i) |uk+1 − uk| ≤ 2
 max since, by definition ofU(2)
N , U(2)

N ⊂ U

whereU is given by (5.6b), (ii) (a − b)2 ≤ 2(a2 + b2) and (iii) the meshes are quasi-uniform

with quasi-uniformity ratio� , which by (1.2b), implies that 1/ ∆N,k ≤ � N for all k. On the other

hand, the fact that the bound in (5.9) is independent ofN (in particular, does not go to zero as

N → ∞) indicates thatcN stays large enough so that the penalty term will be effective in damp-

ing out unwanted control oscillations even as N → ∞. Thus,cN is the correct order in 1/ N; any

smaller and the penalty term would not damp out unwanted oscillations and any larger and we

would not be able to prove epi-convergence as we do below. Typically, the fixed parameterc will

be chosen very small so that the penalty term does not affect the solution away from singular arcs.

Even so, erratic control behavior on singular sub-arcs will be damped because even a small

penalty effects control perturbations on singular sub-arcs that would otherwise have very little

effect on the Lagrangian.

- 134 - Chap. 4

Our first task is to show that the modified problemsPN,c epi-converge to the original prob-

lem P. We emphasize that Theorem 5.3 relies on the fact thatP is defined over the set of controls

with bounded variation.

Theorem 5.3 (Epi-convergence). Suppose {PN } i s a sequence of approximating problems

defined on quasi-uniform meshes{ tN } w ith quasi-uniformity ratio� using second order splines

(= 2) and that{ PN } epi-converges to problemP asN → ∞. Also suppose that{ PN,c } i s a

sequence of modified approximating problems formed by adding to the objective functions ofPN

the termcNV
•
ar2(u). Then { PN,c } epi-converges toP asN → ∞.

Proof. Since {PN } epi-converges to P we merely need to show that the extra term,

cNV
•
ar2

tN
(u), in PN,c epi-converges to zero.BecausecNV

•
ar2(uN) ≥ 0 for all uN ∈∈ L(2)

tN
, it is clear

that for any sequence {uN } w ith uN ∈∈ L(2)
tN

such that uN → u ∈∈ BV as N → ∞,

lim cNV
•
ar2(uN) ≥ 0. Thus,part (b) of Definition 2.2.1 is satisfied.We will now show that part

(a) of Definition 2.2.1 is also satisfied.Let u ∈∈ BV. For eachN, define the piecewise constant

function

(5.10a)vN(t) =
N

k=1
Σ vN,kΠN,k(t) , t ∈∈ [0, 1] ,

where

(5.10b)vN,k = ∫
tk

tk−1

u(t)dt ,

(5.10c)ΠN,k(t) =.

î

1

0

if t ∈∈ [tk−1, tk)

otherwise,
k = 1, . . .N − 1

(5.10d)Π(t)N,N =.

î

1

0

if t ∈∈ [tN−1, tN]

otherwise.

We then constructuN ∈∈ L(2)
tN

asuN = S−1
tN

(� N) where� N k = vN,k for k = 1, . . . ,N. We see that

(5.11a)uN → u as N → ∞
since the space of piecewise constant function is dense inL2[0, 1] ⊃ L1

∞,2[0, 1] ⊃ BV. Also, for

all N,

(5.11b)Var[0,1](uN) = Var[0,1](vN) ≤ Var[0,1](u) ,

where the equality in (5.11b) follows immediately from the definition ofVar[0,1](⋅) and the

inequality follows from Lemma 3.2 in[122]. Next, with our notationuN k =. uN(tk−1) for

k = 1, . . . ,N + 1, we have from (5.8b,c),

- 135 - Chap. 4

cNV
•
ar2(uN) =

c

2(N + 1)N2

N−1

k=1
Σ

uN k+2 − uN k+1

∆N k+1
−

uN k+1 − uN k

∆N k

2

≤
c

2(N + 1)N2
2

N−1

k=1
Σ

uN k+2 − uN k+1

∆N,k+1

2

+

uN k+1 − uN k

∆N,k

2

,

where we have used the fact that (a − b)2 ≤ 2(a2 + b2)

≤
2c

2(N + 1)N2
2

N

k=1
Σ

uN k+1 − uN k

∆N,k+1

2

≤
2c

(N + 1)N2
(� N)2

N

k=1
Σ |uN k+1 − uN k|

2 ,

where we have used the quasi-uniformity condition∆N,k ≥ 1 / � N,

≤
2c� 2

N + 1

N

k=1
Σ |uN k+1 − uN k|

2

(5.12)=
2c� 2

N + 1

Var[0,1](uN)

2

,

sinceuN ∈∈ L(2)
tN

. Therefore, from (5.11b) and (5.12),

(5.13)cNV
•
ar2(uN) ≤

2c� 2

N + 1

Var[0,1](u)

2

→ 0 as N → ∞

sinceu ∈∈ BV implies thatVar[0,1](u) < ∞. This shows that, limcNV
•
ar2(uN) ≤ 0. Hence,Defini-

tion 2.2.1(a) holds.

We can gain insight into how the penalty termcNV
•
ar2

tN
(u) damps out spurious control oscil-

lations by considering its Hessian.Given u ∈∈ L(2)
tN

, let � = StN ,2(u). If we define the row vector

(5.14)s(�) =. [(s1 − s0) (s2 − s1) . . . (sN+� −2 − sN+� −3)] ,

with sk as defined in (5.17b), then

(5.15)V
•
ar2

tN
(u) =

1

2
s(�)s(�)T .

Further, if we define

- 136 - Chap. 4

(5.16a)DN =.

−1 1

−1 1
. . .

−1 1

 N×N+1

,

(5.16b)∆ =.

∆N,0
. . .

∆N,N−1

,

then we see that

(5.16c)
ds(�)

d � = s� =. DN−1∆−1DN ,

and

(5.16d)s(�) = � sT� .

Hence,V
•
ar2

tN
(u) = 1

2 � sT� s� � T and its second derivative is giv en by

(5.17)d2V
•
ar2

tN
(u)

d � 2
= sT� s� .

Proposition 5.4. For u ∈∈ L(2)
tN

, the matrix
d2V

•
ar2

tN
(u)

d � 2
is symmetric, positive semi-definite.

The null-space of
d2V

•
ar2

tN

d � 2
is the two-dimensional subspace

(5.18a){ u ∈∈ L(2)
tN

| u(t) = a + bt , a, b ∈∈ IR } .

Proof. That
d2V

•
ar2

tN

d � 2
is symmetric, positive semi-definite is obvious. Letu ∈∈ L(2)

tN
have coeffi-

cients� = StN ,2(u). Then,from (5.17) and (5.16d),

(5.18b)/
\ � d2V

•
ar2

tN

d � 2
, � \

/ = /
\ � sT� , � sT� \

/ = /
\ s(�), s(�) \

/ .

The result now follows by noting from (5.7b) and (5.14) thats(�) = 0 if and only if u = a + bt

for somea, b ∈∈ IR.

Thus,
d2V

•
ar2

tN
(u)

d � 2
is positive-definite except on the subspace of controls that have constant slopes.

To see how this affects the solutions of the approximating problem consider a singular controlP

with approximating problemsPN and modified approximating problemsPN,c. First, let { ûN }

be a sequence of solutions to{ PN } such thatûN → u* whereu* is a singular optimal control.

For each N, let �̂ N be the Lagrange multipliers associated with the constraints forPN at the

- 137 - Chap. 4

solutionûN . If N is large enough, the Hessian of the Lagrangian,∇ 2
uuLN(ûN , �̂ N), for PN is sin-

gular or near singular. Let � uN ∈∈ L(2)
tN

be a vector in the null-space of∇ 2
uuLN(ûN). Then,

expanding the Lagrangian aroundûN , we see that

(5.19a)L(ûN+ � uN , �̂ N) = L (ûN , �̂ N) + O(||� uN ||4)

since the first and third order variations with respect to� uN are zero for a solution toPN . Thus,

small perturbations in the null-space of∇ 2
uLN(ûN , �̂ N) hav every little affect on the Lagrangian

for PN . Next, consider the modified approximating problemPN,c. Let { ûN } be a sequence of

solutions to{ PN,c } such thatûN → u* . As before, let �̂ N be the Lagrange multipliers and let

� uN be a vector in the null-space of∇ 2
uLN(ûN , �̂ N). Now when we expand the Lagrangian for

the modified approximating problem we find that

(5.19b)L(ûN+ � uN , �̂ N) = L (ûN , �̂ N) +
1

2
/
\ � uN ,

d2V
•
ar2

tN

d � 2
� uN

\
/ + O(||� uN ||4) .

Thus, according to Proposition 5.4, any perturbation,� uN , that is not a straight line,i.e. contains

oscillations, will lead to a second-order increase in the value of the Lagrangian.It is this property

that tends to damp out control oscillations that may occur on singular arcs of the numerical solu-

tions.

Remark 5.5. Any control u ∈∈ L(2)
tN

can be written asu = u1 + u2 where u2 = u(0) + u(1)t.

Proposition 5.4 shows thatu2 does not contribute to the penalty term inPN,c. This is precisely

the behavior we want because any spurious oscillation inu must be contained inu1. Had we cho-

sen to penalize the variation of the control,Var[0,1](u), rather than the piecewise derivative varia-

tion of the control, the null-space of the Hessian of the penalty term would consist of only con-

stant functions.Thus, even u2 would contribute to the penalty term.That would be undesirable.

Remark 5.6. Another possibility for solving singular optimal control is to use the proximal

point method.In this approach, the approximating problems are defined as

(5.20)� = (� ,u) ∈∈ H(r)
N

min { � o,N(�) + cN ||u − uN−1* ||2 | � c,N(�) ≤ 0 } ,PN,cN

whereu−1* is chosen by the user anduN−1* is the solution obtained forPN−1,cN−1
. Clearly, the

additional term ||uN−1* − u||2 adds a positive definite matrix to the Hessian of the Lagrangian for

PN,cN
. This is similar to the idea of adding the term� ||u||2Q to the objective function. However,

||uN−1* − uN* || → 0 automatically if uN* → u* , even if cN = c is fixed. In this way, some of the

numerical difficulties associated with the former method may be overcome. Convergence results

for the proximal point method can be found in[123,124]. Oneadvantage we see to our

- 138 - Chap. 4

modification over both of these methods is that it has a minimal impact on the solutions of the

approximating problems since the value ofc in the definition (5.8c) ofcN can be chosen to be

very small. Thus, a good numerical solution can be obtained even if only a singlePN,c is solved

using a moderate value ofN. In the other methods,N must be allowed to grow large.

Numerical Examples. Below we present the results of solving two trajectory constrained sin-

gular control problems with and without the addition of a penalty on the piecewise derivative vari-

ation of the control.We used second order splines and the fourth order RK methodA4 and solved

the discretized problems using NPSOL[125]. Thefirst problem is the Obstacle problem and the

second problem is the Goddard Rocket maximum ascent problem with a trajectory constraint on

the dynamic air pressure (see Appendix B).

The first problem has two trajectory constraints,l1(t, x(t), u(t) ≤ 0 and l2(t, x(t), u(t)) ≤ 0.

Tw o versions of this problem were solved. Oneversion includes these trajectory constraints

directly as part of the optimization problem.The second version of this problem has these trajec-

tory constraints replaced with the endpoint constraint

(5.21)g(�) =. ∫
1

0
max { (0,l1(t, x(t), u(t))2 } + max { (0,l2(t, x(t), u(t))2 } dt = 0 .

Clearly, the trajectory constraint is satisfied if and only ifg(�) = 0. However, this is not an equiv-

alent representation of the constraint because∇ g(�) = 0 for any feasible� . Hence,g(�) does not

satisfy the usual constraint qualification.No penalty on the piecewise derivative variation of the

control was needed when using (5.21).

The solution of the first problem at discretization level N = 100 and a uniform mesh is

shown in the first three plots.The first plot shows the solution with and without a penalty of

c = 10−3 on the piecewise derivative variation of the control.The next plot shows the solution for

this problem with the trajectory constraints replaced by the endpoint constraint.We did not use a

penalty on the piecewise derivative variation of the control to produce this solution which does

not exhibit control oscillation. The final plot shows a phase plot of the system trajectory and

shows how the trajectory constraints (depicted as dotted lines) are avoided.

The table below lists how many iterations and how much CPU time (in seconds on a Sun

SparcStation 20) were required to solve the two formulations of this problem.Also listed, is the

maximum constraint violation for the continuous-time systems (computed using a variable step-

size integration method with the tolerance set to 10−12). For each solution, the difference in the

computed objective functions was negligible.

- 139 - Chap. 4

Constraint Type Variation Penaltyc Iterations CPUtime ConstraintViolation

trajectory 0 37 29.4 2.62e-8

trajectory 1e-3 16 14.8 2.47e-8

endpoint 0 154 7.2 3.00e-5

Table 5.1: Work required to solve the Obstacle problem.The last row is for the problem refor-
mulated with an endpoint constraint.

The reason the solution for the first two versions take much longer than the problem with the tra-

jectory constraint converted to an endpoint constraint (even though the latter version requires

many more iterations to solve) is that, at each iteration, a gradient is computed at each point,tk,

of the trajectory constraint.Currently, this is done with adjoint equations which is inefficient for

trajectory constraints.The optimization procedure was not able to converge (although the solu-

tion was reasonable) with the endpoint constraint formulation.This is because the endpoint con-

straint does not satisfy the standard constraint qualification.

With penalty
Without penalty

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

Time

Op
tim

al
Co

nt
ro

l

Effect of Penalizing Variation of Control Derivative

Fig. 5.2a: Solution of trajectory constrained, singular optimal control problem Obstacle.The
oscillations are damped out by adding a small penalty on the piecewise derivative variation of the
control to the objective function.

- 140 - Chap. 4

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

Time

O
pt

im
al

 C
on

tro
l

Solution for problem with trajectory constraints converted to endpoint constraint.

Fig. 5.2b: Solution of the same problem with the trajectory constraints converted into an end-
point constraint.Here there is no unwanted oscillation in the solution.

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x2

Phase plot showing optimal trajectory and trajectory constraints

Fig. 5.2c: Phase plot of the optimal trajectory for problem Obstacle.The dotted lines represent
the two trajectory constraints.

- 141 - Chap. 4

The next two plots show the solution for the Goddard rocket problem with the trajectory

constraint maxk Aq(tk) ≤ 10 whereAq(t) is the dynamic pressure given by

(5.22)q(t) = 1
2 � 0e

�
(1−r (t))v2(t)

with A� 0 = 12, 400and = 500. We first solved this problem on a uniform grid with a dis-

cretization level of N = 40 using RK methodA4 with second order splines.The solution exhib-

ited oscillations. So, the mesh was redistributed using mesh redistribution Strategy 1 with

FAC = 50. Thisproduced a non-uniform grid withN = 79. We then solved this problem with

and without a penalty on the piecewise derivative variation of control. This penalty was set at

c = 10−5. A plot of the control solutions for both cases is presented in Figure 5.4a.The plot

includes marks on the time axis that show the locations of the mesh points.Figure 5.4b shows a

plot of the dynamic pressure clearly indicating that the dynamic pressure constraint is satisfied.

Table 5.3 shows how many iteration and how much CPU time (in seconds on a Sun SparcStation

20) was required to solve this problem with and without the penalty.

Variation Penalty Iterations CPUtime

0 35 15.1

10−5 20 9.2

Table 5.3: Work required to solve the trajectory constrained Goddard problem with and without
a penalty on the piecewise derivative variation of the control.The difference in the objective val-
ues is negligible.

4.6 OTHER ISSUES

4.6.1 Fixed ver sus Variab le step-siz e integration

The notion of using a fixed step-size integration routine to solve optimal control problems runs

counter to the standard understanding of how to efficiently integrate differential equations.One

could instead use variable step-size integration to approximately solve the differential equations

and integrals in the statement of the optimal control problem.For optimal control problems, how-

ev er, the overall error in the numerical solutions is not determined only by integration accuracy.

Instead, as shown in equation (2.11a), the approximating capability of the finite-dimensional con-

trol representation also affects the solution error. Furthermore, many simulations will be required

to solve an optimal control problem.So, having high integration accuracy in the early iterations

will provide little, if any, benefit. Thesolution error can always be reduced in later iterations

- 142 - Chap. 4

With penalty
Without penalty

0 0.05 0.1 0.15 0.2 0.25
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time

Op
tim

al
Co

nt
ro

l

Effect of Penalizing Variation of Control Derivative

Fig. 5.4a: Solution of the trajectory constrained Goddard maximum ascent rocket problem
showing how a small penalty on the piecewise derivative variation of the control can damp out
spurious oscillations in the numerical solution.The tick marks indicate the locations of the mesh
points.

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

Time

Dy
na

m
ic

Pr
es

su
re

Fig. 5.4b: A plot of the dynamic pressure showing that the trajectory constraintAq(t) ≤ 10 is
satisfied.

- 143 - Chap. 4

using the mesh refinement strategies discussed in Section 3.

On the other hand, the price of using a variable step-size algorithm is that they are much

slower than fixed step-size algorithms.There are two main factors that contribute to this ineffi-

ciency. One problems is that the gradients computed for the objective and constraint functions

cannot be computed exactly. Rather, they are computed as numerical approximations to the gra-

dients of the continuous-time systems.This reduces the desirability of the search directions that

depend on these gradients.Another problem occurs during line searches.Since the evaluation of

function values depends on the integration mesh, part of the change in function values obtained

from simulations with different step-lengths of the line search is due to the fact that the integra-

tion mesh changes from one simulation to the next when using a variable step-size method.This

can cause line searches to fail if the integration tolerances are not tight enough.

In the following table we provide some experimental results that show that solutions

obtained using a variable step-size integration routine† take much longer to compute and, yet, are

no more accurate than the solutions obtained using the fourth order, fixed step-size Runge-Kutta

integration methodA4.

We used linear spline defined on a uniform mesh withN = 100 intervals for each of the

problems. Theproblems were solved using NPSOL[125] (a sequential quadratic programming

algorithm). ProblemsSwitch and Goddard2 were solved with penalties of 10−3 and 10−4, respec-

tively, on the piecewise derivative variation of the control added to the objective function.

Rayleigh 1 is the unconstrained Rayleigh problem and Rayleigh 2 includes the endpoint con-

straint x1(2. 5)= 0. Goddard1 is the Goddard rocket maximum ascent problem, and Goddard 2

is the same problem with a trajectory constraint on the dynamic pressure,Aq(t) ≤ 10, included.

These problems are described in Appendix B.

The results are shown in Table 6.1. The CPU time is given in seconds on a Sun SparcSta-

tion 20. For the problems which took only a few iterations to solve, a substantial amount of the

execution time was involved in computing the coordinate transformation.The optimization was

terminated when all of the following termination criteria were met:(i)

(6.1a)||ZT ∇ FR f (!)||H2
≤ 10−6(1 + max { 1+ | f (!)|, ||∇ FR f (!)||H2

}) ,

where∇ FR f (!) is the gradient of the objective function with respect to free variables (variable not

at their bounds) andZT ∇ FR f (!) is the projection of the free gradient into the feasible region, (ii)

† We used LSODA which is a very efficient linear, multi-step Adams-Moulton method with variable step-size and variable or-
der. The integration was reset at each mesh point because of discontinuities inu̇(tk). Furtherdetails of the implementation can be
found in the RIOTS user’s manual.

- 144 - Chap. 4

(6.1b)maxj |resj | ≤ 10−4

whereresj is the violation of thej -th nonlinear constraint, and(iii)

(6.1c)||" i+1 − " i ||H2
≤ 10−6(1 + ||" ||)H2

.

The relative and absolute integration tolerances for the variable step-size integration routine were

both set to 10−8. At lower tolerance the line searches often failed.

RK methodA4 Variable step-size integration

Problem Iterations CPU time ||" * − " * N || Iterations CPUtime ||" * − " * N ||

LQR 5 1.0167 2.9087e-6 5 2.3500 3.0363e-6

Rayleigh 1 18 1.300 0.00142 18 5.5333 0.01042

Rayleigh 2 22 1.9833 0.00152 22 10.4167 0.14022

Bang 12 3.500 0.5471 12 9.1167 0.5471

Switch 1 2.500 0.0134 2 9.4833 0.0134

Obstacle 16 14.3000 0.05242 15 282.0833 0.05242

Goddard 1 103 4.2333 1.00622 481 22.88331

Goddard 2 27 24.4667 1.07892 71 90.73331

Table 6.1: Comparison of the amount of work required to solve problems using fixed step-size
RK methodA4 and a variable step-size integration method.

The superscript1 indicates that the optimization algorithm failed to converge for the marked

entry. The solutions returned in these two cases were unacceptably bad.The superscript2 indi-

cates that the quantity ||" * − " * N || was estimated using (4.20).

We make the following observations from the data in Table 6.1:

• The execution time for the variable step-size method was about two to twenty times greater

than the execution time for the fixed step-size RK method.

• The solution errors obtained with the variable step-size integration method was no better, and

in some cases was worse, than the solution errors obtained with the fixed step-size RK

method. Thereason for this is that the gradients computed with the variable step-size routine

are computed as approximations to the continuous-time gradients for the original problem.

They are not exact gradients for the approximating problem.This prevents the optimization

algorithm from being able to obtain very accurate solutions to the approximating problems.

• The optimization algorithm failed to converge for the Goddard Rocket problems when using

the variable step-size integration routine.

- 145 - Chap. 4

These observations strongly suggest that, without a specific reason to the contrary, it is bet-

ter to use a fixed step-size RK method than a variable step-size integration method.Cases where

this may not be true arise when the differential equations describing the system dynamics are stiff

or very difficult to numerically integrate.

4.6.2 Problems with equality constraints and constraints that do not satisfy the

Slater Condition.

Although we did not consider equality constraints in our convergence theory in Chapter 2, our

discretization scheme can still be formally applied to optimal control problems with state end-

point equality constraints.If any constraints, equality or inequality, in P do not satisfy the Slater

conditions, Assumption 2.4.11, then the approximating problemsPN may have no solution even

though there is a solution to the original problemP (see [44,51,126]). However, from a practical

point of view, the outcome is that the algorithm which is used to solve PN will simply terminate

without being able to satisfy the constraints beyond a certain accuracy. It is, therefore, a good

idea to use large constraint violation tolerances when the discretization level is low to avoid any

unnecessary iterations that occur trying to satisfy the constraints.The achievable accuracy will,

however, increase as the discretization level N increases.

- 146 - Chap. 4

Chapter 5

USER’S MANUAL FOR RIOTS

1. INTRODUCTION

This chapter describes the implementation of a Matlab† toolbox called RIOTS for solving

optimal control problems.The name RIOTS stands for ‘‘Recursive‡ Integration Optimal Trajec-

tory Solver.’’ This name highlights the fact that the function values and gradients needed to find

the optimal solutions are computed by forward and backward integration of certain differential

equations.

RIOTS is a collection of programs that are callable from the mathematical simulation pro-

gram Matlab. Most of these programs are written in either C (and linked into Matlab using Mat-

lab’s MEX facility) or Matlab’s M-script language.All of Matlab’s functionality, including com-

mand line execution and data entry and data plotting, are available to the user. The following is a

list of some of the main features of RIOTS.

• Solves a very large class of finite-time optimal controls problems that includes: trajectory

and endpoint constraints, control bounds, variable initial conditions (free final time prob-

lems), and problems with integral and/or endpoint cost functions.

• System functions can be supplied by the user as either object code or M-files.

• System dynamics can be integrated with fixed step-size Runge-Kutta integration, a discrete-

time solver or a variable step-size method.The software automatically computes gradients

for all functions with respect to the controls and any free initial conditions.These gradients

are computed exactly for the fixed step-size routines.

• The controls are represented as splines.This allows for a high degree of function approxi-

mation accuracy without requiring a large number of control parameters.

† Matlab is a registered trademark of Mathworks, Inc. Matlab version 4.2c with the Spline toolbox is required.
‡ Iterative is more accurate but would not lead to a nice acronym.

- 147 - Chap. 5

• The optimization routines use a coordinate transformation that creates an orthonormal basis

for the spline subspace of controls.The use of an orthogonal basis can results in a signifi-

cant reduction in the number of iterations required to solve a problem and an increase in the

solution accuracy. It also makes the termination tests independent of the discretization level.

• There are three main optimization routines, each suited for different levels of generality of

the optimal control problem.The most general is based on sequential quadratic program-

ming methods.The most restrictive, but most efficient for large discretization levels, is

based on the projected descent method.A third algorithm uses the projected descent method

in conjunction with an augmented Lagrangian formulation.

• There are programs that provide estimates of the integration error for the fixed step-size

Runge-Kutta methods and estimates of the error of the numerically obtained optimal control.

• The main optimization routine includes a special feature for dealing with singular optimal

control problems.

• The algorithms are all founded on rigorous convergence theory.

In addition to being able to accurately and efficiently solve a broad class of optimal control

problems, RIOTS is designed in a modular, toolbox fashion that allows the user to experiment

with the optimal control algorithms and construct new algorithms. Theprogramsouter and

aug_lagrng, described later, are examples of this toolbox approach to constructing algorithms.

RIOTS is a collection of several different programs (including a program which is, itself,

called riots) that fall into roughly three categories: integration/simulation routines, optimization

routines, and utility programs.Of these programs, the ones available to the user are listed in the

following table,

Simulation Routines Optimization Routines Utility Programs

simulate riots control_error

check_deriv pdmin distrib ute

check_grad aug_lagrng est_error

ev al_fnc outer make_spline

transform

Several of the programs in RIOTS require functions that are available in the Matlab Spline tool-

box. In addition to these programs, the user must also supply a set of routines that describe the

optimal control problem which must be solved. Several example optimal control problems come

- 148 - Chap. 5

supplied with RIOTS. Finally, there is a Matlab script calledRIOTS_demowhich provides a

demonstration of some of the main features of RIOTS. To use the demonstration, perform the fol-

lowing steps:

Step 1: Follow the directions in §8 on compiling and linking RIOTS. Also,compile the sam-

ple systems rayleigh.c, bang.c and goddard.c that come supplied with RIOTS.

Step 2: Start Matlab from within the ‘RIOTS/systems’ directory.

Step 3: Add the RIOTS directory to Matlab’s path by typing at the Matlab prompt,

>> path(path,’full_path_name_for_RIOTS’)

>> RIOTS_demo

Limitations. This is the first version of RIOTS. Asit stands, there are a few significant limita-

tions on the type of problems which can be solved by RIOTS:

1. Problemswith inequality state constraints that require a very high level of discretization can-

not be solved by RIOTS. Also,the computation of gradients for trajectory constraints is not

handled as efficiently as it could be.

2. Problemsthat have highly unstable, nonlinear dynamics may require a very good initial

guess for the solution in order to be solved by RIOTS.

3. Generalconstraints on the controls that do not involve state variables are not handled effi-

ciently: adjoints are computed but not used.

4. RIOTS does not allow delays in the systems dynamics (although Padéapproximations can

be used).

5. Numericalmethods for solving optimal control problems have not reached the stage that,

say, methods for solving differential equations have reached. Solvingan optimal control

problem can, depending on the difficulty of the problem, require significant user involvement

in the solution process.This sometimes requires the user to understand the theory of optimal

control, optimization and/or numerical approximation methods.

Conventions. This manual assumes familiarity with Matlab. The following conventions are

used throughout this manual.

• Program names and computer commands are indicated inbold typeface.

• User input is indicated inCourier typeface.

• Optional program arguments are listed in brackets. Thedefault value for any optional argu-

ment can be specified using[].

• Optional program arguments at the end of an argument list can be omitted in which case

- 149 - Chap. 5

these arguments take on their default values.

• Typing a function’s name without arguments shows the calling syntax for that function.

Help can be obtained for M-file programs by typinghelp followed by the function name at

Matlab’s prompt. Typinghelp RIOTS produces a list of the programs in RIOTS.

• The machine precision is denoted by# mach.

2. PROBLEM DESCRIPTION

RIOTS is designed to solve optimal control problems of the form†

(u,$) ∈∈ Lm
∞,2[a,b]×IRn

minimize

î % ∈∈ qo

max { f % (u, &) =. g%o(& , x(b)) + ∫
b

a
l %o(t, x, u)dt }

OCP

subject to: ẋ = h(t, x, u) , x(a) = & , t ∈∈ [a, b] ,

u j
min(t) ≤ u j (t) ≤ u j

max(t) , j = 1, . . . ,m , t ∈∈ [a, b] ,

& j
min ≤ & j ≤ & j

max , j = 1, . . . ,n ,

l % ti (t, x(t), u(t)) ≤ 0 , ' ∈∈ qti , t ∈∈ [a, b] ,

g%ei(& , x(b)) ≤ 0 , ' ∈∈ qei ,

g%ee(& , x(b)) = 0 , ' ∈∈ qee ,

wherex(t) ∈∈ IRn, u(t) ∈∈ IRm, g : IRn × IRn → IR, l : IR × IRn × IRm → IR, h : IR × IRn × IRm → IRn

and we have used the notationq =. { 1, . . . ,q } . Only with the optimization programriots linked

with CFSQP (see description ofriots) can qo > 1. The functions inOCP can also depend upon

parameters which are passed from Matlab at execution time usingget_flags(described in §4).

The subscriptso, ti , ei, and ee on the functionsg(⋅, ⋅) and l (⋅, ⋅, ⋅) stand for, respectively,

‘‘ objective function’’, ‘ ‘trajectory constraint’’, ‘ ‘endpoint inequality constraint’’ and ‘‘endpoint

equality constraint’’. The subscripts forg(⋅, ⋅) and l (⋅, ⋅, ⋅) are omitted when all functions are

being considered without regard to the subscript.The functions in the description of problem

† Not all of the optimization routines in RIOTS can handle the full generality of problemOCP.

- 150 - Chap. 5

OCP, and the derivatives of these functions‡, must be supplied by the user as either object code

or as M-files. The bounds on the components of(andu are specified on the Matlab command

line.

The optimal control problemOCP allows optimization over both the controlu and one or

more of the initial states(. To be concise, we will define the variable

) = (u, () ∈∈ H2 =. Lm
∞,2[a, b] × IRn .

Note that the order ofu and (is reversed of the order used in the rest of this thesis because of

programming considerations.With this notation, we can write, for example, f ()) instead of

f ((, u). Theinner product onH2 is given by

/
\
)

1,) 2
\
/ H2

=. /
\ u1, u2

\
/ L2

+ /
\ (1, (2

\
/ .

The norm corresponding to this inner product is given by

||) ||H2
= /

\
) ,) \

/
1/2
H2

.

Transcription f or Free Final Time Pr oblems.

ProblemOCP is a fixed final time optimal control problem.However, free final time problems

are easily incorporated into the form ofOCP by augmenting the system dynamics with two addi-

tional states (one additional state for autonomous problems).The idea is to specify a nominal

time interval, [a, b], for the problem and to use a scale factor, adjustable by the optimization pro-

cedure, to scale the system dynamics and hence, in effect, scale the duration of the time interval.

This scale factor, and the scaled time, are represented by the extra states.Then RIOTS can mini-

mize over the initial value of the extra states to adjust the scaling.For example, the free final time

optimal control problem

u,T
min g

∼
(T, y(T)) +

a+T

a
∫ l

∼
(t, y, u)dt

subject toẏ = h
∼

(t, y, u) , y(a) = * , t ∈∈ [a, a + T] ,

can, with an augmented state vector x =. (y, xn−1, xn), be converted into the equivalent fixed final

time optimal control problem

‡If the user does not supply derivatives, the problem can still be solved usingriots with finite-difference computation of the
gradients.

- 151 - Chap. 5

u,+ n
min g(, , x(b)) +

b

a
∫ l (t, x, u)dt

subject toẋ = h(t, x, u) =.

xnh
∼

(xn−1, y, u)

xn

0

, x(a) = , =

-
a

, n

, t ∈∈ [a, b] ,

wherey is the firstn − 2 components ofx, g(, , x(b)) =. g
∼

(a + T , n, y(b)), l (t, x, u) =. l
∼

(xn−1, y, u)

andb = a + T. Endpoint and trajectory constraints can be handled in the same way. The quantity

T = b − a is the nominal duration of the trajectories.In this transcription,xn−1 plays the role of

time and, n is theduration scale factor, so named becauseT , n is the effective duration of the tra-

jectories for the scaled dynamics.Thus, for any t ∈∈ [a, b], xn(t) = , n, xn−1(t) = a + (t − a) , n

and the solution,t f , for the final time ist f = xn−1(b) = a + (b − a) , n. Thus, the optimal duration

is T* = t f − a = (b − a) , n = T , n. If a = 0 and b = 1, thent f = T* = , n. The main disadvan-

tage to this transcription is that it converts linear systems into nonlinear systems.

For autonomous systems, the extra variable xn−1 is not needed.Note that, it is possible,

ev en for non-autonomous systems, to transcribe minimum time problems into the form ofOCP

using only one extra state variable. However, this would require functions like

h(t, x, u) = h
∼

(txn, y, u). SinceRIOTS does not expect the user to supply derivatives with respect

to the t argument it can not properly compute derivatives for such functions.Hence, in the cur-

rent implementation of RIOTS, the extra variable xn−1 is needed when transcribing non-

autonomous, free final time problems.

Trajector y constraints.

The definition of problemOCP allows trajectory constraints of the forml ti (t, x, u) ≤ 0 to be han-

dled directly. Howev er, constraints of this form are quite burdensome computationally. This is

mainly due to the fact that a separate gradient calculation must be performed for each point at

which the trajectory constraint is evaluated.

At the expense of increased constraint violation, reduced solution accuracy and an increase

in the number of iterations required to obtain solutions, trajectory constraints can be converted

into endpoint constraints which are computationally much easier to handle.This is accomplished

as follows. Thesystem is augmented with an extra state variablexn+1 with

ẋn+1(t) = . max { 0,l ti (t, x(t), u(t)) } 2 , xn+1(a) = 0 ,

where . > 0 is a positive scalar. The right-hand side is squared so that it is differentiable with

respect tox andu. Then it is clear that either of the endpoint constraints

- 152 - Chap. 5

gei(/ , x(b)) =. xn+1(b) ≤ 0
or

gee(/ , x(b)) =. xn+1(b) = 0

is satisfied if and only if the original trajectory constraint is satisfied.In practice, the accuracy to

which OCP can be solved with these endpoint constraints is quite limited because these endpoint

constraints do not satisfy the standard constraint qualification (described in the next section).

This difficulty can be circumvented by eliminating the constraints altogether and, instead, adding

to the objective function the penalty termgo(/ , x(b)) =. xn+1(b) where now 0 serves as a penalty

parameter. Howev er, in this approach,0 must now be a large positive number and this will

adversely affect the conditioning of the problem.Each of these possibilities is implemented in

‘obstacle.c’ for problem Obstacle (see Appendix B).

Contin uum Objective Functions.

Objective functions of the form

u
min

t ∈∈ [a,b]
max l (t, x(t), u(t))

can be converted into the form of problemOCP by augmenting the state vector with an additional

state,w, such that

ẇ = 0 ; w(0) = / n+1

and forming the equivalent, trajectory constrained problem

(u,1 n+1)
min / n+1

subject to

l (t, x(t), u(t)) − / n+1 ≤ 0 , t ∈∈ [a, b] .

This transcription also works for standard min-max objective functions (which are only supported

for problemOCP whenriots is linked with CFSQP) of the form

u
min 2

∈∈ qo

max g
2
(u, /) + ∫

b

a
l
2
(t, x(t), u(t)dt .

In this case, an equivalent endpoint constrained problem with a single objective function,

u,1 n+1
min / n+1

subject to

- 153 - Chap. 5

g∼ 3 (u, 4) − 4 n+1 ≤ 0 , 5 ∈∈ qo

is formed by using the augmented state vector (x, w, z) wtih

ẇ = 0 , w(0) = 4 n+1

ż3 = l 3 (t, x(t), u(t)) , z3 (0) = 0 , 5 ∈∈ qo ,

and defining

g∼ 3 (u, 4) =. g3 (u, 4) + z3 (b) .

3. USING RIOTS

This section provides some examples of how to simulate systems and solve optimal control prob-

lems with the RIOTS toolbox. Detailed descriptions of all required user-functions, simulation

routines, optimization programs and utility programs are given in subsequent sections.These

programs are all callable from within Matlab once Matlab’s path is set to include the directory

containing RIOTS. TheMatlab command

>> path(path,’full_path_name_for_RIOTS’)

>> RIOTS_demo

should be used for this purpose.Refer to the §8, ‘‘Compiling and Linking RIOTS’’, for details on

how to install RIOTS.

RIOTS provides approximate solutions of continuous time optimal control problems by

solving discretized ‘‘approximating’’ problems. Theseapproximating problems are obtained by

(i) numerically integrating the continuous time system dynamics with one of four Runge-Kutta

integration methods† and(ii) restricting the space of allowable controls to finite-dimensional sub-

spaces of splines.In this way, the approximating problems can by solved using standard mathe-

matical programming techniques to optimize over the spline coefficients and any free initial con-

ditions. It is not important for the user of RIOTS to understand the discretization procedure or

splines.

The accuracy of the solutions obtained in this manner depends on several factors which

include:

†RIOTS also includes a discrete-time system solver and a variable step-size integration routine.

- 154 - Chap. 5

(1) Theaccuracy of the integration scheme (which depends on the order of the integration

scheme and the selection of the integration mesh).

(2) How well elements of the spline subspace can approximate solutions of the original, infi-

nite-dimensional problem (this depends on the order and knot sequence of the splines and on the

smoothness of the optimal control).

(3) How accurately the approximating problems are solved by the underlying mathematical

programming algorithm.

The allowable spline orders are related to the particular integration method used (see

description ofsimulate in §5). For problems that have smooth optimal controls, higher order

splines will provide solutions with higher accuracy. Smoothness is not, however, typical of opti-

mal controls for problems with control and/or trajectory constraints.In general, the spline knot

sequence is constructed from the integration mesh

tN =. { tk } N+1
k=1 .

We start our indexing from k = 1 rather thank = 0, as we did in previous chapters, because Mat-

lab’s indexing begins with one.This integration mesh also represents the breakpoints for the con-

trol splines. The subscriptN, referred to as the discretization level, indicates that there areN

integration steps andN + 1 spline breakpoints.Each spline is determined from the knot sequence

and its coefficients. For a spline of order6 , each control input requiresN + 6 − 1 coefficients and

these coefficients are stored asrow vectors. Thus,a system withm inputs will be stored in a

‘‘ short-fat’’ matrix with m rows andN + 6 − 1 columns. Moredetails about splines are given in

the next section.

Typically, we use the Matlab variableu to store the spline coefficients. Thesystem trajecto-

ries computed by integrating the system dynamics are stored in the variablex. Like u, x is a

‘‘ short-fat’’ matrix with n rows andN + 1 columns. Thus,for example,x(:,k) is the computed

value of x(tk). Otherquantities, such as gradients and adjoints, are also stored as ‘‘short-fat’’

matrices.

The following sample sessions with RIOTS solve a few of the sample optimal control prob-

lems that are supplied with RIOTS as examples. AppendixB provides a description of these

problems and the C-code implementations are included in the ‘RIOTS/systems’ sub-directory.

- 155 - Chap. 5

Session 1 (unconstrained problem). In this session we compute a solution to the uncon-

strained nonlinear Problem Rayleigh.This system has two states and one input.We start by

defining the initial conditions and a uniform integration mesh over the time interval [0,2. 5] with

with a discretization level of N = 50 intervals.

We can take a look at the solution trajectories by simulating this system with some initial control.

We will specify an arbitrary piecewise linear (order7 = 2) spline by usingN + 7 − 1 = N + 1

coefficients and perform a simulation by callingsimulate.

>> N=50;

>> x0=[-5;-5]; % Initial conditions

>> t=[0:2.5/50:2.5]; % Uniform integration mesh

>> u0=zeros(1,N+1); % Spline with all coeff’s zero.

>> [j,x]=simulate(1,x0,u0,t,4,2);

>> plot(t,x)

0 0.5 1 1.5 2 2.5
−8

−6

−4

−2

0

2

4

6
[j,x]=simulate(1,x0,u0,t,4,2);

Next, we find an approximate solution to the Problem Rayleigh, which will be the same type of

spline asu0, by using eitherriots or pdmin.

>> [u1,x1,f1]=riots(x0,u0,t,[],[],[],100,4);

>> [u1,x1,f1]=pdmin(x0,u0,t,[],[],[],100,4);

The first three input arguments are the initial conditions, initial guess for the optimal control, and

the integration mesh.The next three inputs are empty brackets indicating default values which, in

this case, specify that there are no control lower bounds, no control upper bounds, and no systems

parameters. Thelast two inputs specify that a maximum of 100 iterations are to be allowed and

that integration routine 4 (which is a fourth order Runge-Kutta method) should be used.The out-

puts are the control solution, the trajectory solution, and the value of the objective function.

- 156 - Chap. 5

The displayed output forpdmin is shown below. The displayed output forriots depends on

the mathematical programming algorithm with which it is linked (see description ofriots in §6).

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,

1 objective function,

0 nonlinear and 0 linear trajectory constraints,

0 nonlinear and 0 linear endpoint inequality constraints,

0 nonlinear and 0 linear endpoint equality constraints.

Initial Scale factor = 0.02937

Method = L-BFGS.

Quadratic fitting off.

Completed 1 pdmin iter ; step = +1.67e+00 (k= -1), ||free_grad|| = 1.47e-01, FFF, cost = 34.40807327949193

Completed 2 pdmin iters; step = +4.63e+00 (k= -3), ||free_grad|| = 1.01e-01, FFF, cost = 31.33402612711411

Completed 3 pdmin iters; step = +2.78e+00 (k= -2), ||free_grad|| = 5.26e-02, FFF, cost = 29.78609937166251

Completed 4 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|| = 2.25e-02, FFF, cost = 29.30022802876513

Completed 5 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 9.03e-03, FFF, cost = 29.22362561134763

Completed 6 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|| = 2.61e-03, FFF, cost = 29.20263210973429

Completed 7 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 5.06e-04, FFF, cost = 29.20066785222028

Completed 8 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.80e-04, FFF, cost = 29.20060360626269

Completed 9 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.86e-05, FFF, cost = 29.20059986273411

Completed 10 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 5.94e-06, FFF, cost = 29.20059981048738

Completed 11 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|| = 2.07e-06, FFF, cost = 29.20059980021174

Completed 12 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.57e-07, FFF, cost = 29.20059979946436

Completed 13 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 5.18e-08, FFF, cost = 29.20059979945842

Completed 14 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.16e-08, FFF, cost = 29.20059979945757

Completed 15 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 3.20e-10, TTF, cost = 29.20059979945753

Completed 16 pdmin iters; step = +6.00e-01 (k= +1), ||free_grad|| = 1.66e-10, TTT, cost = 29.20059979945752

Finished pdmin loop on the 16-th iteration.

Normal termination test satisfied.

The column labeled||free_grad|| gives the value of ||∇ f (8)||H2
. For problems with bounds

on the free initial conditions and/or controls, this norm is restricted to the subspace where the

bounds are not active. The column with three letters, each aT or F, indicates which of the three

normal termination criterion (see description ofpdmin in §6) are satisfied.For problems with

control or initial condition bounds there are four termination criteria.

We can also solve this problem with quadratic splines (9 = 3) by usingN + 9 − 1 = N + 2 spline

coefficients.

>> u0=zeros(1,N+2);

>> [u2,x2,f2]=pdmin(x0,u0,t,[],[],[],100,4);

We can view the control solutions usingsp_plot which plots spline functions.The trajectory

solutions can be viewed usingplot or sp_plot.

- 157 - Chap. 5

>> sp_plot(t,u1) % Plot linear spline solution

>> sp_plot(t,u2) % Plot quadratic spline solution

0 0.5 1 1.5 2 2.5

−1

0

1

2

3

4

5

sp_plot(t,u2)

0 0.5 1 1.5 2 2.5

−1

0

1

2

3

4

5

sp_plot(t,u1)

- 158 - Chap. 5

Session 2 (problem with endpoint constraint). The user-defined functions for Problem

Rayleigh, solved in session 1, are written so that it will include the endpoint constraint

x1(2. 5)= 0 if there is a global Matlab variable calledFLAGS set to the value of 1 (seeget_flags

in §4). To solve this problem with the endpoint constraint we can use eitherriots or aug_lagrng.

We must clearsimulatebefore re-solving so that the variableFLAGS gets read.

>> global FLAGS

>> FLAGS = 1;

>> clear simulate % Reset simulate so the it will check for FLAGS

>> simulate(0,[]); % Initialize

Loaded 1 flag.

Rayleigh

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,

1 objective function,

0 nonlinear and 0 linear trajectory constraints,

0 nonlinear and 0 linear endpoint inequality constraints,

0 nonlinear and 1 linear endpoint equality constraints.

The output displayed above shows that one flag has been read from the Matlab workspace. The

next two lines are messages produced by the user-supplied routines.The last set of data shows

the value of the system information (see discussion ofneq[] in the description ofinit , §4, and

alsosimulate, §5). Sincethis problem has a state constraint, we can use eitheraug_lagrng or

riots to solve it.

>> x0=[-5;-5];

>> u0=zeros(1,51);

>> t=[0:2.5/50:2.5];

>> u=aug_lagrng(x0,u0,t,[],[],[],100,5,4);

Finished pdmin loop on the 2-nd iteration.

Step size too small.

Completed 1 Outer loop iterations.

Multipliers : -2.81973

Penalties : 10

Constraint Violations: 1.90255

Norm of unconstrained portion of Lagrangian gradient = 0.00646352

Rayleigh

Finished pdmin loop on the 15-th iteration.

Normal termination test satisfied.

Completed 2 Outer loop iterations.

Multipliers : -0.658243

Penalties : 10

Constraint Violations: 0.000483281

Norm of unconstrained portion of Lagrangian gradient = 0.000206008

- 159 - Chap. 5

Rayleigh

Finished pdmin loop on the 8-th iteration.

Normal termination test satisfied.

Completed 3 Outer loop iterations.

Multipliers : -0.653453

Penalties : 10

Constraint Violations: -7.91394e-06

Norm of unconstrained portion of Lagrangian gradient = 1.37231e-06

Rayleigh

Finished pdmin loop on the 7-th iteration.

Normal termination test satisfied.

Completed 4 Outer loop iterations.

Multipliers : -0.653431

Penalties : 10

Constraint Violations: -8.6292e-07

Norm of unconstrained portion of Lagrangian gradient = 2.19012e-07

Objective Value : 29.8635

Normal termination of outer loop.

The displayed output reports that, at the current solution, the objective value is 29.8635 and the

endpoint constraint is being violated by−8. 63× 10−6. There is some error in these values due to

the integration error of the fixed step-size integration routines.We can get a more accurate mea-

sure by using the variable step-size integration routine to simulate the system with the control

solutionu:

>> simulate(1,x0,u,t,5,0); % Simulate system using LSODA

>> simulate(2,1,1) % Evaluate the objective function

ans =

29.8648

>> simulate(2,2,1) % Evaluate the endpoint constraint

ans =

5.3852e-06

So the reported values are fairly accurate.

- 160 - Chap. 5

Session 3 (Problem with control bounds and free final time). This session demonstrates the

transcription, explained in §2, of a free final time problem into a fixed final time problem.The

transcribed problem has bounds on the control and free initial states.Also, distrib ute (see §7) is

used to improve integration mesh after an initial solution is found.A more accurate solution will

then be computed by re-solving the problem on the new mesh.

The original problem, Problem Bang, is a minimum-time problem with three states and one

input. Thisproblem is converted into a fixed final time problem using the transcription described

in §2. Only one extra state variable was needed since the problem has time-independent

(autonomous) dynamics.The augmented problem is implemented in the file ‘bang.c’.First we

will define the integration mesh and then the initial conditions.

>> N = 20; % Discretization level

>> T = 10; % Nominal final time

>> t=[0:T/N:T]; % Nominal time interval for maneuver

The nominal time interval is of durationT. Next, we specify a value for : 3, the duration scale

factor, which is the initial condition for the augmented state.The quantityT : 3 represents our

guess for the optimal duration of the maneuver.

>> x0=[0 0 1]’; % Initial conditions for augmented system

>> fixed=[1 1 0]’; % Which initial conditions are fixed

>> x0_lower=[0 0 0.1]’; % Lower bound for free initial condition

>> x0_upper=[0 0 10]’; % Upper bound for free initial condition

>> X0=[x0,fixed,x0_lower,x0_upper]

X0 =

0 1.0000 0 0

0 1.0000 0 0

1.0000 0 0.1000 10.0000

The first column ofX0 is the initial conditions for the problem; there are three states including the

augmented state.The initial conditions for the original problem werex(0) = (0, 0)T . The initial

condition for the augmented state is set tox0(3) = : 3 = 1 to indicate that our initial guess for

the optimal final time is one times the nominal final time ofT = 10, i.e., : 3T. The second col-

umn of X0 indicates which initial conditions are to be considered fixed and which are to be

treated as free variables for the optimization program to adjust.A one indicates fixed and a zero

indicates free.The third and fourth columns provide lower an upper bound for the free initial

conditions.

- 161 - Chap. 5

>> u0=zeros(1,N+1);

>> [u,x,f]=riots(X0,u0,t,-2,1,[],100,2); % Solve problem; f=x(3,1)=x0(3)

>> f*T % Show the final time.

ans =

29.9813

In this call toriots, we hav ealso specified a lower bound of -2 and an upper bound of 1 for all of

the control spline coefficients. Sincewe are using second order splines, this is equivalent to spec-

ifying bounds on the value of the control at the spline breakpoints,i.e. bounds onu(tk). We also

specify that the second order Runge-Kutta integration routine should be used.The objective

value f = ; 3 is the duration scale factor. The final time is given by a + (b − a) ; 3 = T ; 3 = 10f.

Here we see that the final time is 29.9813.A plot of the control solution indicates a fairly broad

transition region whereas we expect a bang-bang solution.We can try to improve the solution by

redistributing the integration mesh.We can then re-solve the problem using the new mesh and

starting from the previous solution interpolated onto the new mesh. Thisnew mesh is stored in

new_t, andnew_u contains the control solution interpolated onto this new mesh.

>> [new_t,new_u]=distribute(t,u,x,2,[],1,1); % Re-distribute mesh

redistribute_factor = 7.0711

Redistributing mesh.

>> X0(:,1) = x(:,1);

>> [u,x,f]=riots(X0,new_u,new_t,-2,1,[],100,2);

>> f*10

ans =

30.0000

Notice that before callingriots the second time, we set the initial conditions (the first column of

X0) to x(:,1), the first column of the trajectory solution returned from the preceding call to

riots. Because; 3 is a free variable in the optimization,x(3,1) is different than what was ini-

tially specified forx0(3). Sincex(3,1) is likely to be closer to the optimal value for ; 3 than

our original guess we set the current guess forX0(3,1) to x(3,1).

We can see the improvement in the control solution and the solution for the final time.The

reported final time solution is 30 and this happens to be the exact answer. The plot of the control

solution before and after the mesh redistribution is shown below. The circles indicate where the

mesh points are located.The improved solution does appear to be a bang-bang solution.

- 162 - Chap. 5

0 10 20 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

time

Control soln. before redistribution

0 10 20 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

time

Control soln. after redistribution

- 163 - Chap. 5

Session 4 (Example using outer). Thisexample demonstrates the experimental programouter

which repeatedly adjusts the integration mesh between calls toriots in order to achieve a desired

solution accuracy. We useouter to solve the Goddard rocket ascent problem implemented in the

file ‘goddard.c’. The Goddard rocket problem is a free-time problem whose objective is to maxi-

mize the rocket’s altitude subject to having a fixed amount of fuel.This problem is particularly

difficult because its solution contains a singular sub-arc.We use an initial guess ofu(t) = 1 for

all t so that the rocket starts out climbing and does not fall into the ground.We will use a second

order spline representation and start with a discretization level of N = 50. Also,since this is a

minimum-time problem, we augmented the system dynamics with a fourth state that represents

the duration scale factor. We start by guessing a duration scale factor of 0.1 by setting< 4 = 0. 1

and we specify [0,1] for the nominal time interval. Thusthe nominal final time isT < 4 = 0. 1.

>> x0=[0 1 1 0.1]’;

>> fixed=[1 1 1 0]’;

>> t=[0:1/50:1];

>> u0=ones(1,51);

Now outer is called with lower and upper control bounds of 0 and 3.5, respectively; no systems

parameters; a maximum of 300 iterations for each inner loop; a maximum of 10 outer loop itera-

tion with a maximum discretization level of N = 500; default termination tolerances; integration

algorithm 4 (RK4); and mesh redistribution strategy 2.

>> [new_t,u,x]=outer([x0,fixed],u0,t,0,3.5,[],500,[10;500],4,[],2);

Goddard

Completed 70 riots iterations. Normal Termination.

Doubling mesh.

========Completed 1 OUTER iteration=========

Norm of Lagrangian gradient = 3.43882e-05

Sum of constraint errors = 4.57119e-09

Objective function value = -1.01284

Integration error = 1.49993e-06

===

Goddard

Completed 114 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

========Completed 2 OUTER iterations========

Norm of Lagrangian gradient = 4.64618e-06

Sum of constraint errors = 4.41294e-10

Objective function value = -1.01284

Integration error = 2.01538e-07

Change in solutions = 0.128447

Control error estimate = 0.0200655

- 164 - Chap. 5

===

Redistribution factor = 2.07904

Redistributing mesh.

New mesh contains 146 intervals. Old mesh contained 100 intervals.

Goddard

Completed 206 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

========Completed 3 OUTER iterations========

Norm of Lagrangian gradient = 2.38445e-08

Sum of constraint errors = 8.49733e-11

Objective function value = -1.01284

Integration error = 4.67382e-09

Change in solutions = 0.0878133

Control error estimate = 0.000452989

===

Normal Termination.

CPU time = 26.9167 seconds.

The message stating that the Kuhn-Tucker conditions are satisfied but that the sequence did not

converge is a message from NPSOL which is the nonlinear programming algorithm linked with

riots in this example. Thismessage indicates that, although first order optimality conditions for

optimality are satisfied (the norm of the gradient of the Lagrangian is sufficiently small), the con-

trol functions from one iteration ofriots to the next have not stopped changing completely. The

sources of this problem are(i) the Goddard problem is a singular optimal control problem; this

means that small changes in the controls over some portions of the time interval have very little

effect on the objective function and(ii) outer calls riots with very tight convergence tolerances.

Because of this, the calls toriots probably performed many more iterations than were useful for

the level of accuracy achieved. Choosingbetter convergence tolerances is a subject for future

research.

The optimal control and optimal state trajectories are shown on the next page. Notice that

to plot the optimal control we multiply the time vectornew_t by x(4,1) which contains the

duration scale factor. The optimal final time for this problem, sincea = 0 and b = 1, is just

x(4,1)=0.1989. Note that the final mass of the rocket is 0.6.This is the weight of the rocket

without any fuel. Themaximum height is the negative of the objective function,h* (t) ≈ 1. 01284.

>> sp_plot(new_t*x(4,1),u)

>> plot(new_t*x(4,1),x(1,:))

>> plot(new_t*x(4,1),x(2,:))

>> plot(new_t*x(4,1),x(3,:))

- 165 - Chap. 5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time

Optimal Control for the Goddard Rocket Problem

0 0.1 0.2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Fuel

0 0.1 0.2
1

1.005

1.01

Altitude

0 0.1 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Velocity

- 166 - Chap. 5

4. USER SUPPLIED SYSTEM SUBROUTINES

All of the functions in the description ofOCP in §2 are computed from the user functionsh, l and

g; the derivatives of these functions are computed from the user functionsDh, Dl andDg. Two

other user functions,activate andinit , are required for the purpose of passing information to and

from RIOTS.

Smoothness Requirements. The user-supplied functions must have a certain degree of

smoothness. Thesmoothness requirement comes about for three reasons.First, the theory of dif-

ferential equations requires, in general, thath(t, x, u) be piecewise continuous with respect tot,

Lipschitz continuous with respect tox andu and thatu(⋅) be continuous, in order to ensure the

existence and uniqueness of a solution satisfying the system of differential equations.A finite

number of discontinuities inh(⋅, x, u) and u(⋅) are allowable. Second,the optimization routines

needs at least one continuous derivative of the objective and constraint functionsg(⋅, ⋅) and

l (t, ⋅, ⋅). Two continuous derivatives are needed in order for there to be a chance of superlinear

convergence. Thethird reason is that the accuracy of numerical integration of differential equa-

tions depends on the smoothness ofh(⋅, ⋅, ⋅) and l (⋅, ⋅, ⋅). For a fixed step-size methods with order

s, ∂(s)h(t, x, u)/∂xs and∂(s)h(t, x, u)/∂us should be continuous (or the (r − 1)-th partial should be

Lipschitz continuous).Furthermore, any discontinuities inh(⋅, x, u(⋅)) or its derivatives should

occur only at integration breakpoints†. Conversely, the user should place integration breakpoints

wherever such discontinuities occur. The same considerations also hold for the functionl (t, x, u).

For variable step-size integration, h(t, x, u) and l (t, x, u) should have at least continuous partial

derivatives of order one with respect tox and u. Again, any discontinuities inh(⋅, x, u(⋅)) and

l (⋅, x, u(⋅)) or its derivatives should only occur at integration break points.

Constraint Qualifications. A common requirement of mathematical programming algorithms

is linear independence of the active constraints gradients at a solution.It is easy to mathemati-

cally specify a valid constraint in such a way that this condition is violated.For example, con-

sider a scalar constraint of the formg(u) = 0. Thisconstraint can be specified as

g(u)2 = 0 .

However, d
du (g(u)2) = 2g(u) dg

du. Thus, if this constraint is active at the solution u* , i.e.,

g(u*) = 0, then the gradient of this constraint is zero.So this specification for the constraint vio-

lates the constraint qualification.However, if the constraint is specified simply as

† Note that discontinuities inu(t) can only occur at the spline breakpoints,tk.

- 167 - Chap. 5

g(u) = 0 ,

then the constraint qualification is not violated.

The user functions can be supplied as object code or as M-files.The C-syntax and M-file

syntax for these functions are given below. Because all arguments to the object code versions of

the functions are passed by reference, the object code format is compatible with Fortran. Atem-

plate for these functions can be found in the filesystems/template.c. There are also sev-

eral example problems in thesystems directory. In addition to the user-supplied routines, this

section also describes two other functions,get_flagsandtime_fnc, that are callable by user object

code.

There are three main differences between object code and M-file versions of the user functions:

• The programs in RIOTS execute much faster when object code is given.

• Object code versions of the user functions do not need to assign zero values to array compo-

nents which are always zero. M-file versions must set all array values (with the exception of

sys_init).

• There must be a separate M-file for each function with the same name as that function.The

names begin with sys_ followed by the name of the function.For example, sys_Dh.m is the

M-file for the user functionsys_Dh. The directory in which these M-files are located must be

in Matlab’s search path.

• Important: Arrays in Matlab are indexed starting from 1 whereas in C arrays are indexed

starting from 0.For example,neq[4] in C code has an M-file equivalent ofneq(5).

- 168 - Chap. 5

=?>A@CBED?=F@HGJIJKML?KMNM=?>A@HBOD?=?@CG

Purpose

This function is always called once before any of the other user-supplied functions.It allows the

user to perform any preliminary setup needed, for example, loading a data array from a file.

C Syntax

void activate(message)
char **message;

{
*message = "";
/* Any setup routines go here. */

}

M-file Syntax

function message = sys_activate

message = ’’;

Description

If the message string is set, that string will be printed out whenever simulate (form 0) or an opti-

mization routine is called.It is useful to include the name of the optimal control problem as the

message.

See Also: get_flags.

- 169 - Chap. 5

BEPQBE@CIJKML?KMNRBOPSBE@

Purpose

This function serves two purposes. First,it provides information about the optimal control prob-

lem to RIOTS. Second,it allows system parameters to be passed from Matlab to the user-defined

functions at run-time.These system parameters can be used, for instance, to specify constraint

levels. Unlike activate, init may be called multiple times.The arrayneq[] is explained after

the syntax.

C Syntax

void init(neq,params)
int neq[];
double *params;
{
if (params == NULL) {

/* Set values in the neq[] array. */
}
else {

/* Read in runtime system parameters. */
}

}

M-file Syntax

function neq = sys_init(params)

% if params is NULL then setup neq. Otherwise read system
% parameters in params. In Matlab, arrays are indexed
% starting from 1, so neq(i) corresponds to the C statement
% neq[i-1].

if params == [],
% Each row of neq consists of two columns. The value in
% the first column specifies which piece of system
% information to set. The value in the second column is
% the information. For example, to indicate that the
% system has 5 system parameters, one row in neq should be
% [3 5] since neq(3) stores the number of system
% parameters.

% Here we set nstates = 2; ninputs = 1; 1 nonlinear
% endpoint constr.
neq = [1 2 ; 2 1 ; 12 1];

else
% Read in systems parameters from params and store them in

- 170 - Chap. 5

% the global variable sys_params which will be accessible
% to other systems M-files.
global sys_params
sys_params = params;

end

Description

When this functions is called, the variable params will be set to 0 (NULL) if init() is

expected to return information about the optimal control problem via theneq[] array. Other-

wise,params is a vector of system parameters being passed from Matlab to the user’s program.

Whenparams==0, the values inneq[] should be set to indicate the following:

neq[0] --- Numberof state variables.
neq[1] --- Numberof inputs.
neq[2] --- Numberof system parameters.
neq[3] --- Not used on calls to init().Contains time index.
neq[4] --- Not used on calls to init().Used to indicate which function to evaluate.
neq[5] --- Numberof objective functions.
neq[6] --- Numberof general nonlinear trajectory inequality constraints.
neq[7] --- Numberof general linear trajectory inequality constraints.
neq[8] --- Numberof general nonlinear endpoint inequality constraints.
neq[9] --- Numberof general linear endpoint inequality constraints.
neq[10] --- Numberof general nonlinear endpoint equality constraints.
neq[11] --- Numberof general nonlinear endpoint equality constraints.
neq[12] --- Indicatestype of system dynamics and cost functions:

0 --> nonlinear system and cost,
1 --> linear system,
2 --> linear and time-invariant system,
3 --> linear system with quadratic cost,
4 --> linear and time-invariant with quadratic cost.

Remember that, for M-files,neq(i) is equivalent to the C-code statementneq[i-1]. The val-

ues ofneq[] all default to zero exceptneq[5] which defaults to 1. The relationship between

the values inneq[] and the general problem description ofOCP given in §2 is as follows:

n = neq[0], m = neq[1], p = neq[2], qo = neq[5], qti = neq[6]+neq[7],

qei = neq[8]+neq[9] andqee = neq[10]+neq[11]. The locationsneq[3] andneq[4]

are used in calls to the other user-defined functions.

If init setsneq[2]>0, then init will be called again withparams pointing to an array of

system parameters which are provided by the user at run-time.These parameters can be stored in

global variables for use at other times by any of the other user-defined functions.Some examples

of useful system parameters include physical coefficients and penalty function parameters.These

parameters are fixed and will not be adjusted during optimization.Parameters that are to be used

as decision variables must be specified as initial conditions to augmented statesT with ˙T = 0.

- 171 - Chap. 5

Notes

1. Controlbounds should be indicated separately when calling the optimization routines.Do

not include any simple bound constraints in the general constraints.Similarly, simple bounds on

free initial conditions should be specified on the command line.

2. For nonlinear systems, all constraints involving a state variable are nonlinear functions of the

control. Thus,the constraintg(U , x(b)) = x(b) = 0, while linear in its arguments, is nonlinear

with respect tou. The user does not need to account for this situation, however, and should indi-

cate thatg is a linear constraint.RIOTS automatically treats all general constraints for nonlinear

systems as nonlinear.

- 172 - Chap. 5

V IAKRLFKRN V

Purpose

This function serves only one purpose, to computeh(t, x, u), the right hand side of the differential

equations describing the system dynamics.

C Syntax

void h(neq,t,x,u,xdot)
int neq[];
double *t,x[NSTATES],u[NINPUTS],xdot[NSTATES];

{
/* Compute xdot(t) = h(t,x(t),u(t)). */

}

M-file Syntax

function xdot = sys_h(neq,t,x,u)

global sys_params

% xdot must be a column vector with n rows.

Description

On entrance,t is the current time,x is the current state vector andu is the current control vector.

Also,neq[3] is set to the current discrete-time index, k − 1, such thattk ≤ t < tk+1
†.

On exit, the arrayxdot[] should contain the computed value of h(t, x, u). The values of

xdot[] default to zero for the object code version. Notethat for free final time problems the

variablet should not be used because derivatives of the system functions with respect tot are

not computed.In the case of non-autonomous systems, the user should augment the state variable

with an extra staterepresenting time (see transcription for free final time problems in §2).

See Also: time_fnc.

† The index is k − 1 since indexing for C code starts at zero.For M-files,neq(4) = k.

- 173 - Chap. 5

W IJKML?KRN W

Purpose

This function serves two purposes. Itis used to compute values for the integrands of cost func-

tions,lo(t, x, u), and the values of state trajectory constraints,l ti (t, x, u).

C Syntax

double l(neq,t,x,u)
int neq[];
double *t,x[NSTATES],u[NINPUTS];

{
int F_num, constraint_num;
double z;

F_num = neq[4];
NFUNS = neq[5];
if (F_num <= NFUNS) {

/* Compute z = l(t,x(t),u(t) for the F_num integrand. */
/* If this integrand is identically zero, */
/* set z = 0 and neq[3] = -1. */

}
else {

constraint_num = F_num - NFUNS;
/* Compute z = l(t,x(t),u(t) for the */
/* constraint_num trajectory constraint. */

}
return z;

}

M-file Syntax

function z = sys_l(neq,t,x,u)
% z is a scalar.

global sys_params
F_NUM = neq(5);
NFUNS = neq(6);

if F_NUM <= NFUNS
% Compute z = l(t,x(t),u(t)) for the F_num integrand.

else
constraint_num = F_num - NFUNS;
% Compute z = l(t,x(t),u(t)) for the constraint_num
% traj. constraint.

end

- 174 - Chap. 5

Description

On entrance,t is the current time,x is the current state vector andu is the current control vector.

Also, neq[3] is set to the current discrete-time index k − 1 such thattk ≤ t < tk+1 (see footnote

for h) andneq[4] is used to indicate which integrand or trajectory constraint is to be evaluated.

Note that, for free final time problems, the variablet should not be used because derivatives of

the system functions with respect tot are not computed.In this case, the user should augment

the state variable with an extra time state and an extra final-time state as described in §2.

If 1 ≤ neq[4] ≤ qo, thenz should be set tol neq[4]
o (t, x, u). If l neq[4]

o (⋅, ⋅, ⋅) = 0 then, besides

returning 0,l (in object code versions) can setneq[3] = − 1 to indicate that the function is identi-

cally zero. The latter increases efficiency because it tells RIOTS that there is no integral cost.

Only the functionl is allowed to modifyneq[3]. Regardless of how neq[3] is set,l mustalways

return a value even if the returned value is zero.

If neq[4] > qo, thenz should be set tol neq[4] − qo
ti (t, x, u). If there are both linear and nonlin-

ear trajectory constraints, the nonlinear constraints must precede those that are linear. The order-

ing of the functions computed byl is summarized in the following table:

X function to compute

1 ≤ neq[4] ≤ qo neq[4] l Yo(t, x, u)

l Y ti (t, x, u), nonlinear

l Y ti (t, x, u), linear
neq[4] > qo neq[4] − qo

- 175 - Chap. 5

Z IAKRLFKRN Z

Purpose

This function serves two purposes. Itis used to compute the endpoint cost functiongo([, x(b))

and the endpoint inequality and equality constraintsgei([, x(b)) andgee([, x(b)). Thesyntax for

this function includes an input for the time variablet for consideration of future implementations

and should not be used.Problems involving a cost on the final timeT should use the transcription

for free final time problems described in §2.

C Syntax

double g(neq,t,x0,xf)
int neq[];
double *t,x0[NSTATES],xf[NSTATES];

{
int F_num, constraint_num;
double value;

F_num = neq[4];
NFUNS = neq[5];
if (F_num <= NFUNS) {

/* Compute value of g(t,x0,xf) for the */
/* F_num cost function. */

}
else {

constraint_num = F_num - NFUNS;
/* Compute value g(t,x0,xf) for the */
/* constraint_num endpoint constraint. */

}
return value;

}

M-file Syntax

function J = g(neq,t,x0,xf)

% J is a scalar.

global sys_params
F_NUM = neq(5);
if F_NUM <= sys_params(6)

% Compute g(t,x0,xf) for cost function.
elseif F_NUM == 2

% Compute g(t,x0,xf) for endpoint constraints.
end

- 176 - Chap. 5

Description

On entrance,x0 is the initial state vector andxf is the final state vector. The valueneq[4] is

used to indicate which cost function or endpoint constraint is to be evaluated. Nonlinearcon-

straints must precede linear constraints.The order of functions to be computed is summarized in

the following table:

\ function to compute

1 ≤ neq[4] ≤ qo neq[4] g]o(^ , x(b))

g] ie(^ , x(b)), nonlinear

g] ie(^ , x(b)), linear
qo < neq[4] ≤ qo + qei neq[4] − qo

g]ee(^ , x(b)), nonlinear

g]ee(^ , x(b)), linear
qo + qei < neq[4] ≤ qo + qei + qee neq[4] − qo − qei

See Also: time_fnc.

- 177 - Chap. 5

_ V IJKML?KMN _ V
_ W I`KRLFKRN _ W
_ Z IJKML?KMN _ Z

Purpose

These functions provide the derivatives of the user-supplied function with respect to the argu-

mentsx andu. The programsriots (see §6) can be used without providing these derivatives by

selecting the finite-difference option.In this case, dummy functions must be supplied forDh, Dl

andDg.

C Syntax

void Dh(neq,t,x,u,A,B)
int neq[];
double *t,x[NSTATES],u[NINPUTS];
double A[NSTATES][NSTATES],B[NSTATES][NINPUTS];

{
/* The A matrix should contain dh(t,x,u)/dx. */
/* The B matrix should contain dh(t,x,u)/du. */

}

double Dl(neq,t,x,u,l_x,l_u)
int neq[];
double *t,x[NSTATES],u[NINPUTS],l_x[NSTATES],l_u[NINPUTS];

{
/* l_x[] should contain dl(t,x,u)/dx */
/* l_u[] should contain dl(t,x,u)/du */
/* according to the value of neq[4]. */
/* The return value is dl(t,x0,xf)/dt which */
/* is not currently used by RIOTS. */
return 0.0;

}

double Dg(neq,t,x0,xf,g_x0,g_xf)
int neq[];
double *t,x0[NSTATES],xf[NSTATES],J_xf[NSTATES];

{
/* g_x0[] should contain dg(t,x0,xf)/dx0. */
/* g_xf[] should contain dg(t,x0,xf)/dxf. */
/* according to the value of neq[4]. */
/* The return value is dg(t,x0,xf)/dt which */
/* is not currently used by RIOTS. */
return 0.0;

}

- 178 - Chap. 5

M-file Syntax
function [A,B] = sys_Dh(neq,t,x,u)
global sys_params
% A must be an n by n matrix.
% B must be an n by m matrix.

function [l_x,l_u,l_t] = sys_Dl(neq,t,x,u)
global sys_params
% l_x should be a row vector of length n.
% l_u should be a row vector of length m.
% l_t is a scalar---not currently used.

function [g_x0,g_xf,g_t] = sys_cost(neq,t,x0,xf)
global sys_params
% g_x0 and g_xf are row vectors of length n.
% g_t is a scalar---not currently used.

Description

The input variables and the ordering of objectives and constraints are the same for these derivative

functions as they are for the corresponding functionsh, l, andg. The derivatives with respect tot

are not used in the current implementation of RIOTS and can be set to zero.The derivatives

should be stored in the arrays as follows:

Function Firstoutput index range Secondoutput index range

Dh A[i][j] =

dh(t, x, u)

dx

 i+1, j+1

i = 0: n − 1

j = 0: n − 1
B[i][j] =

dh(t, x, u)

du

 i+1, j+1

i = 0: n − 1

j = 0: m − 1

Dl l_x[i] =

dl(t, x, u)

dx

 i+1

i = 0: n − 1 l_u[i] =

dl(t, x, u)

du

 i+1

i = 0: m − 1

Dg g_x0[i] =

dg(t, x0, xf)

dx0

 i+1

i = 0: n − 1 g_xf [i] =

dg(t, x0, xf)

dxf

 i+1

i = 0: m − 1

sys_Dh A(i , j) =

dh(t, x, u)

dx

 i , j

i = 1: n

j = 1: n
B(i , j) =

dh(t, x, u)

du

 i , j

i = 1: n

j = 1: m

sys_Dl l_x(i) =

dl(t, x, u)

dx

 i

i = 1: n l_u(i) =

dl(t, x, u)

du

 i

i = 1: m

sys_Dg g_x0(i) =

dg(t, x0, xf)

dx0

 i

i = 1: n g_xf (i) =

dg(t, x0, xf)

dxf

 i

i = 1: m

Note that, forsys_Dh, RIOTS automatically accounts for the fact that Matlab stores matrices

transposed relative to how they are stored in C.

- 179 - Chap. 5

Z GJ@CNRaQ= Z K

Purpose

This function allows user-supplied object code to read a vector of integers from Matlab’s

workspace.

C Syntax
int get_flags(flags,n)

int flags[],*n;

Description

A call to get_flagscausesflags[] to be loaded with up ton integers from the arrayFLAGS if

FLAGS exists in Matlab’s workspace. Itis the user’s responsibility to allocate enough memory in

flags[] to storen integers. Thevalue returned byget_flagsindicates the number of integers

read intoflags[].

The main purpose ofget_flagsis to allow a single system program to be able to represent

more than one problem configuration.The call toget_flagsusually takes place within the user-

functionactivate. In the example below, get_flagsis used to read in the number of constraints to

use for the optimal control problem.

Example

extern int get_flags();
static int Constraints;

void activate(message)
char **message;

{
int n,flags[1];

*message = "Use FLAGS to specify number of constraints.";
n = 1;
if (get_flags(flags,&n) > 0);

Constraints = flags[0];
else

Constraints = 0;
}

- 180 - Chap. 5

Notes

1. It is best to defineFLAGS as a global variable in casesimulate gets called from within an M-

file. Thisis accomplished by typing

>> global FLAGS

At the Matlab prompt.To clearFLAGS use the Matlab command

>> clear global FLAGS

2. Sinceactivate is called once only, you must clearsimulate if you want to re-read the values

in FLAGS. To clearsimulate, type

>> clear simulate

at the Matlab prompt.

3. For M-files, any global variable can be read directly from Matlab’s workspace so an M-file

version ofget_flagsis not needed.

- 181 - Chap. 5

@CBEbcGdNMefPQ>

Purpose

This function allows user-supplied object code to make calls back to a user-supplied Matlab m-

function calledsys_time_fnc.mwhich can be used to compute a function of time.Call-backs to

Matlab are very slow. Since this function can be called thousand of times during the course of a

single system simulation it is best to provide the time function as part of the object code if possi-

ble.

C Syntax

void time_fnc(t,index,flag,result)
int *index,*flag;
double *t,result[];

Syntax of sys_time_fnc.m

function f = sys_time_fnc(tvec)

% tvec = [time;index;flag]
% Compute f(time,index,flag).

Description

If time_fnc is to called by one of the user-functions, then the user must supply an m-function

namedsys_time_fnc. The inputstvec(1)=time andtvec(2)=index to sys_time_fncare

related bytindex ≤ time ≤ tindex+1. The value ofindex passed tosys_time_fncis one greater

than the value passed fromtime_fnc to compensate for the fact the Matlab indices start from 1

whereas C indices start from 0.The inputflag is an integer that can be used to select from

among different time functions.Even ifflag is not used, itmustbe set to some integer value.

The values in the vectorf returned fromsys_time_fncare stored inresult which must

have enough memory allocated for it to store these values.

- 182 - Chap. 5

Example

Suppose we want l to compute f (t)x1(t) where f (t) = sin(t) + yd(t) with yd(t) is some pre-

computed global variable in the Matlab workspace. Thenwe can usetime_fnc to computef (t)

and use this value to multiplyx[0]:

extern void time_fnc();
double l(neq,t,x,u)

int neq[];
double *t,x[NSTATES],u[NINPUTS];

{
int i,zero;
double result;

i = neq[3]; /* Discrete-time index. */
zero = 0;
time_fnc(t,&i,&zero,&result); /* Call time_fnc with flag=0. */
return result*x[0]; /* Return f(t)*x1(t). */

}

Here is the function that computesf (t). It computes different functions depending on the value

of flag=t(3). In our example, it is only called withflag=0.

function f = sys_time_fnc(t)

global yd % Suppose yd is a pre-computed, global variable.
time = t(1);
index = t(2);
flag = t(3);

if flag == 0
f = yd(time) + sin(time);

else
f = another_fnc(time);

end

- 183 - Chap. 5

5. SIMULATION ROUTINES

This section describes the central program in RIOTS,simulate. All of the optimization programs

in RIOTS are built aroundsimulate which is responsible for computing all function values and

gradients and serves as an interface between the user’s routines and Matlab.

The computation of function values and gradients is performed on the integration mesh

tN =. { tN,k } N+1
k=1 .

Note that the indexing starts fromk = 1 (rather thank = 0 as in earlier chapters) to conform with

Matlab’s indexing convention. For any meshtN we define

∆N,k =. tN,k+1 − tN,k .

This mesh also specifies the breakpoints of the control splines.The values of the trajectories

computed bysimulate are given at the timestN,k and are denoted,xN,k, k = 1, . . . ,N + 1. Thus,

xN,k represents the computed approximation to the solutionx(tN,k) of the differential equation

ẋ = h(t, x, u), x(a) = g . The subscriptN is omitted when its its presence is clear from context.

Spline Representation of controls. The controlsu are represented as splines given by

u(t) =
N+h −1

k=1
Σ i k j tN ,h ,k(t)

where i k ∈∈ IRm and j tN ,h ,k(⋅) is the k-th B-spline basis element of orderk , defined on the knot

sequence formed fromtN by repeating its endpointsk times. Currently, RIOTS does not allow

repeated interior knots.We will denote the collection of spline coefficients by

i =. { i k } N+h −1
k=1 .

For single input systems,i is a row vector. Those interested in more details about splines are

referred to the excellent reference[63]. Thetimestk, k = 1, . . . ,N, define the spline breakpoints.

On each interval [tk, tk+1], the spline coincides with ank -th order polynomial.Thus, fourth order

splines are made up of piecewise cubic polynomials and are called cubic splines.Similarly, third

order splines are piecewise quadratic, second order splines are piecewise linear and first order

splines are piecewise constant.For first and second order splines,i k = u(tk). For higher-order

splines, the B-spline basis elements are evaluated using the recursion formula in (A2.2a).

The following pages describesimulate. First, the syntax and functionality ofsimulate is

presented. Thisis followed by a description of the methods used bysimulate to compute func-

tion values and gradients.Finally, two functions,check_deriv and check_grad, for checking

user-supplied derivative information, and the functionev al_fnc are described.

- 184 - Chap. 5

KMBEbcl W =?@CG

Purpose

This is the central program in RIOTS. Theprimary purpose ofsimulate is to provide function

values and gradients of the objectives and constraints using one of six integration algorithms.The

optimization routines in RIOTS are built aroundsimulate. This program also serves as a general

interface to the user-supplied functions and provides some statistical information.

There are currently seven different forms in whichsimulatecan be called.Form 1 and form

2 (which is more conveniently accessed usingev al_fnc) are the most useful for the user. The

other forms are used primarily by other programs in RIOTS. Theform is indicated by the first

argument to simulate.

Form 0
[info,simed] = simulate(0,{params})

Form 1
[f,x,du,dz,p] = simulate(1,x0,u,t,ialg,action)

Form 2
f=simulate(2,f_number,1)
[du,dz,p] = simulate(2,f_number,action)

Form 3
[xdot,zdot] = simulate(3,x,u,t,{f_num,{k}})
[xdot,zdot,pdot] = simulate(3,x,u,t,p,{k})

Form 4
[h_x,h_u,l_x,l_u] = simulate(4,x,u,t,{f_num,{k}})

Form 5
[g,g_x0,g_xf] = simulate(5,x0,xf,tf,{f_num})

Form 6
stats = simulate(6)

Form 7
lte = simulate(7)

- 185 - Chap. 5

Description of Inputs and Outputs

The following table describes the inputs that are required by the various forms ofsimulate.

Table S1

Input numberof rows numberof columns description
x0 n 1† initial state
xf n 1 final state
u m N + m − 1 control vector
t 1 N + 1 time vector
tf 1 to 4 1 final time
ialg 1 1 integration algorithm

action 1 1 (see below)
f_num 1 1 (see below)
params (see below) (seebelow) systemparameters

The following table describes the outputs that are returned by the various forms ofsimulate.

Table S2

Output numberof rows numberof columns description
f 1 1 objective or constraint value
x n N + 1 state trajectory
p n N + 1 adjoint trajectory
du m N + m − 1 control gradient
dx0 n 1 gradient of initial conditions
lte n + 1 N + 1 local integration error
xdot n N + 1 h(t, x, u)
zdot 1 N + 1 l (t, x, u)
h_x n n ∂h / ∂x
h_u n m ∂h / ∂u
l_x 1 n ∂l / ∂x
l_u 1 m ∂l / ∂u
g_x0 1 n ∂g / ∂x0

g_xf 1 n ∂g / ∂x f

If a division by zero occurs during a simulation,simulate returns the Matlab variableNaN, which

stands for ‘‘Not a Number’’, in the first component of each output.This can be detected, if

desired, using the Matlab functionisnan().

† x0 can be a matrix but only the first column is used.

- 186 - Chap. 5

Note: The length of the control vector depends on the control representation.Currently, all of

the integration routines are setup to work with splines of ordern defined on the knot sequence

constructed fromtN . The current implementation of RIOTS does not allow repeated interior

knots. The length (number of columns) ofu and du is equal to N + n − 1 where

N=length(t)-1 is the number of intervals in the integration mesh.The allowable spline

orders depends on the integration algorithm,ialg, according to the following table:

Table S3

IALG Orderof spline representation
0 (discrete) discrete-timecontrols
1 (Euler) n = 1
2 (RK2) n = 2
3 (RK3) n = 2
4 (RK4) n = 2, 3, 4
5 (LSODA) n = 1, 2, 3, 4†

6 (LSODA w/0 Jacobians) n = 1, 2, 3, 4†

When more than one spline order is possible, the integration determines the order of the spline

representation by comparing the length of the control inputu to the length of the time inputt. If

LSODA is called withialg=5, the user must supplydh
dx and dl

dx in the user-functionsDh andDl.

If the user has not programmed these Jacobians, LSODA must be called withialg=6 so that, if

needed, these Jacobians will be computed by finite-differences. Thedifferent integration methods

are discussed in detail following the description of the various forms in whichsimulate can be

called.

Bugs

1. Theremay be a problem with computation of gradients for the variable step-size integration

algorithm (ialg=5,6) if the number of interior knotsnknots is different than one (see description

of form 1 and gradient computations for LSODA below).

See Also: ev al_fnc

† The maximum spline order allowed bysimulate when using LSODA can be increased by changing the pre-compiler define
symbolMAX_ORDER in adams.c.

- 187 - Chap. 5

Description of Diff erent Forms

[info,simed] = simulate(0,{params})

This form is used to load system parameters and to return system information.If params is sup-

plied, simulate will make a call to init so that the user’s code can read in these parameters.Nor-

mally params is a vector. It can be a matrix in which case the user should keep in mind that

Matlab stores matrices column-wise (Fortran style). If the system has no parameters then either

omit params or setparams=[]. If no output variables are present in this call tosimulate the

system message loaded on the call toactivate and other information about the system will be dis-

played.

The following is a list of the different values ininfo returned bysimulate:

info(1) number of states

info(2) number of inputs

info(3) number of system parameters

info(4) (reserved)

info(5) (reserved)

info(6) number of objective functions

info(7) number of nonlinear trajectory inequality constraints

info(8) number of linear trajectory inequality constraints

info(9) number of nonlinear endpoint inequality constraints

info(10) number of linear endpoint inequality constraints

info(11) number of nonlinear endpoint equality constraints

info(12) number of linear endpoint equality constraints

info(13) type of system (0 through 4)

0: nonlinear dynamics and objective

1: linear dynamics; nonlinear objective

2: linear, time-invariant dynamics; nonlinear objective

3: linear dynamics; quadratic objective

4: linear, time-invariant dynamics; quadratic objective

info(14) number of mesh points used in the most recent simulation

The scalar outputsimed is used to indicate whether a call tosimulate, form 1, has been made.

If simed=1 then a simulation of the system has occurred.Otherwisesimed=0.

- 188 - Chap. 5

[f,x,du,dx0,p] = simulate(1,x0,u,t,ialg,action)

This form causes the system dynamics,ẋ = h(t, u, x) with x(a) = x0, to be integrated using the

integration method specified byialg (cf. Table S3). Also, the valuef of the first objective func-

tion, and possibly its gradients,du anddx0 and the adjointp, can be evaluated. Onlythe first

column ofx0 is read. The strictly increasing time vectort of lengthN + 1 specifies the integra-

tion mesh on [a, b] with t(1) = a andt(N + 1) = b. The controlu is composed ofm rows of

spline coefficients.

The calculations performed bysimulate, form 2, depend on the value ofaction. These

actions are listed in the following table:

Table S4

Action ReturnValues
0 no return values
1 function value f
2 f and system trajectoryx
3 f , x and control and initial condition gradientsdu anddz
4 f , x, du, dzand the adjoint trajectoryp.

When using the variable step-size method LSODA (ialg = 5,6), the argumentialg

can include three additional pieces of data:

Setting Default Value

ialg(2) Number of internal knots used during gradient computation. 1
ialg(3) Relative integration tolerance. 1e-8
ialg(4) Absolute integration tolerance. 1e-8

The meaning of ‘‘internal knots’’ i s discussed below in the description of gradient computation

with LSODA.

Example

The following commands, typed at the Matlab prompt, will simulate a three state system with two

inputs using integration algorithm RK4 and quadratic splines.The simulation time is froma = 0

until b = 2. 5and there areN = 100 intervals in the integration mesh.

>> N=100;
>> t = [0:2.5/N:2.5];
>> x0 = [1;0;3.5];

- 189 - Chap. 5

>> u0 = ones(2,N+2); % u0(t)=[1;1];
>> [j,x] = simulate(1,x0,u0,t,4,2);

j = simulate(2,f_number,1)
[du,dx0,p] = simulate(2,f_number,action)

This form allows function values and gradients to be computed without re-simulating the system.

A call to this form must be proceeded by a call tosimulate, form 1. The results are computed

from the most recent inputs (x0,u,t,ialg) for the call tosimulate, form 1. The following

table shows the relationship between the value off_number, and the function value or gradient

which is computed.

Table S5

f_number range Function Function to be evaluated

1 ≤ f_number ≤ n1 goo(p , x(b)) + ∫
b

a

l oo(t, x, u)dt q = f_number

n1 < f_number ≤ n2 l o ti (t, x(t), u(t))
q = n%(N + 1) + 1 , t = tk where
n = f_number − n1 − 1 and
k = f_number − n1 − q (N + 1).

n2 < f_number ≤ n3 goei(p , x(b)) q = f_number − n2

n3 < f_number ≤ n4 goee(p , x(b)) q = f_number − n3

wheren1 = qo is the number of objective functions,n2 = n1 + qti (N + 1) with qti the number of

trajectory constraints,n3 = n2 + qei with qei the number of endpoint inequality constraints, and

n4 = n3 + qee with qee the number of endpoint equality constraints.The notationn%m means the

remainder after division of n by m (n modulom). Thus,for trajectory constraints, ther -th con-

straint (withr = n%(N + 1) + 1) is evaluated at timetk.

If action=1, only du anddx0 are returned.If action=2, du, dx0 andp are returned.

The function,ev al_fnc, provides a convenient interface to this form.

[xdot,zdot] = simulate(3,x,u,t,{f_num,{k}})
[xdot,zdot,pdot] = simulate(3,x,u,t,p,{k})

This form evaluates (as opposed to integrates) the following quantities: ẋ = h(t, x, u),

ż = l so(t, x, u), and ṗ = − (∂h(t,x,u)T

∂x p + ∂l (t,x,u)T

∂x) at the times specified byt. These functions are

evaluated at the points int. If f_num is specified,r = f_num, otherwiser = 1. Thefunction

l s (⋅, ⋅, ⋅) is evaluated according to Table S5 above. The last input,k, can only be supplied ift is a

single time point.It is used to indicate the discrete-time interval containingt. That is,k is such

- 190 - Chap. 5

that tk ≤ t < tk+1. If k is given, l is called withneq[3] = k − 1. In this call, the values inu rep-

resent pointwise values ofu(t), not its spline coefficients. Theinputsx andu must have the same

number of columns ast.

[h_x,h_u,l_x,l_u] = simulate(4,x,u,t,{f_num,{k}})

This form evaluates∂h(t,x,u)
∂x , ∂h(t,x,u)

∂u , ∂l t (t,x,u)
∂x , and ∂l t (t,x,u)

∂x . In this call,t must be a single time

point. If f_num is specified,u = f_num, otherwise u = 1. Thefunction l v (⋅, ⋅, ⋅) is evaluated

according to Table S5 above. The last input,k, indicates the discrete-time interval containingt.

That is,k is such thattk ≤ t < tk+1. If k is given, l is called withneq[3] = k − 1. In this call,

the values inu represent pointwise values ofu(t), not its spline coefficients.

[g,g_x0,g_xf] = simulate(5,x0,xf,tf,{f_num})

This form evaluatesgv (x0,xf), ∂gt (x0,xf)
∂x0 , and ∂gt (x0,xf)

∂xf . If f_num is specified,u = f_num.

Otherwiseu = 1. Theinput tf gets passed to the user functionsg andDg (see descriptions in

§2) for compatibility with future releases of RIOTS.

stats = simulate(6)

This form provides statistics on how many times the functionsh and Dh have been evaluated,

how many times the system has been simulated to produce the trajectoryx, and how many times

functions or the gradients off v (⋅, ⋅), gv (⋅, ⋅) or l v ti (⋅, ⋅, ⋅) hav ebeen computed.The following table

indicates what the components ofstats represent:

Table S6

Component Meaning
stats(1) Number of calls toh.
stats(2) Number of calls toDh.
stats(3) Number of simulations.
stats(4) Number of function evaluations.
stats(5) Number of gradient evaluations.

- 191 - Chap. 5

lte = simulate(7)

This form, which must be preceded by a call tosimulate, form 1 withialg=1,2,3,4, returns

estimates of the local truncation error for the fixed step-size Runge-Kutta integration routines.

The local truncation error is given, for k = 1, . . . ,N, by

ltek =

xk(tk+1) − xN,k+1

zk(tk+1) − zN,k+1

,

wherexk(tk+1) and zk(tk+1) are the solutions of

ẋ

ż

=

h(x, u)

l1
o(t, x, u)

,
x(tk) = x N,k

z(tk) = 0
, t ∈∈ [tk, tk+1] .

and xN,k+1 and zN,k+1 are the quantities computed by one Runge-Kutta step fromxN,k and 0,

respectively. These local truncations errors are estimated by taking double integration steps as

described in Section 4.3.1.The local truncation error estimates are used bydistrib ute (see

description in §7) to redistribute the integration mesh points in order to increase integration accu-

racy.

- 192 - Chap. 5

IMPLEMENTATION OF THE INTEGRATION ROUTINES

Here we discuss some of the implementation details of the different integration routines built into

simulate.

System Sim ulation

System simulation is accomplished by forward integration of the differential equations used to

describe the system.There are four fixed step-size Runge-Kutta integrators, one variable step-

size integrator (LSODA), and one discrete-time solver. The RK integrators and LSODA produce

approximate solutions to the system of differential equation

ẋ = h(t, x, u) , x(a) = w
ż = l (t, x, u) , z(a) = 0

on the interval t ∈∈ [a, b]. The Runge-Kutta integrators, described by the Butcher arraysA1, A2,

A3 andA4 given in Chapter 4.2, are of order 1, 2, 3 and 4 respectively. The discrete-time integra-

tor solves

xk+1 = h(tk, xk, uk) , x0 = w
zk+1 = l (tk, xk, uk) , z0 = 0

for k = 1, . . . ,N.

The variable step-size integrator is a program called LSODA [127,128]. LSODA can solve

both stiff and non-stiff differential equations.In the non-stiff mode, LSODA operates as an

Adams-Moulton linear, multi-step method.If LSODA detects stiffness, it switches to backwards

difference formulae.When operating in stiff mode, LSODA requires the system Jacobians
∂h(t,x,u)

∂x and ∂l (t,x,u)
∂x . If the user has not supplied these functions, LSODA must be called using

ialg=6 so that these quantities will be computed using finite-difference approximations.Other-

wise, LSODA should be called usingialg=5 so that the analytic expressions for these quantities

will be used.

The integration precision of LSODA is controlled by a relative tolerance and an absolute

tolerance. Theseboth default to 1e− 8 but can be specified inialg(3:4) respectively (see

description ofsimulate, form 1). The only non-standard aspect of the operation of LSODA by

simulate is that the integration is restarted at every mesh pointtk due to discontinuities in the

control splineu(⋅), or its derivatives, at these points.

- 193 - Chap. 5

Gradient Ev aluation

In this section we discuss the computation of the gradients of the objective and constraint func-

tions of problemOCP with respect to the controls and free initial conditions.These gradients are

computed via backwards integration of the adjoint equations associated with each function.

Discrete-time Integrator. For the discrete-time integrator, the adjoint equations and gradients

are given by the following equations.For the objective functions,x ∈∈ qo, k = N, . . . , 1,

pk = h x(tk, xk, uk)T pk+1 + l y x(tk, xk, uk)T ; pN+1 =
∂gy (z , xN+1)T

∂xN+1

df y (z , u)

du

T

k

= hu(tk, xk, uk)T pk+1 + l yu(tk, xk, uk)T

df y (z , u)T

d z =
∂gy (z , xN+1)T

∂ z + p0 .

For the endpoint constraints,x ∈∈ qei ∩ qee, k = N, . . . , 1,

pk = h x(tk, xk, uk)T pk+1 ; pN+1 =
∂gy (z , xN+1)T

∂xN+1

dgy (z , xN+1)

du

T

k

= hu(tk, xk, uk)T pk+1

dgy (z , xN+1)T

d z =
∂gy (z , xN+1)T

∂ z + p1 .

For the trajectory constraints,x ∈∈ qti , evaluated at the discrete-time index l ∈∈ { 1, . . . ,N + 1 } ,

pk = h x(tk, xk, uk)T pk+1 , k = l − 1, . . . , 1 ; pl = l y x(t l , xl , ul)
T

dly (tk, xk, uk)

du

T

k

=

î

hu(tk, xk, uk)T pk+1

l yu(tk, xk, uk)T

0

k = 1, . . . ,l − 1

k = l

k = l + 1, . . . ,N

dly (t l , xl , ul)
T

d z = p1 .

- 194 - Chap. 5

Runge-Kutta Integrators. For convenience, we introduce the notation

uk, j = u({ k,i j
) , k = 1, . . . ,N , j = 1, . . ,r ,

where

{ k, j =. tk + c j ∆k

andci ∈∈ [0, 1] are parameters of the Runge-Kutta integration method.For RK1, RK2 and RK3,

r = s wheres is the number of stages andi j = j . Howev er, because RK4 has a repeated control

sample (cf. Chap 2.4), we have r = 3, i1 = 1, i2 = 2 and i3 = 4.

The computation of the control gradients is a two-step process.First, the gradient off (| , u)

with respect to the control samplesuk, j , k = 1, . . . ,N, j = 1, . . . ,r , wherer is the number of con-

trol samples per integration interval, and with respect to| is computed.Second, the gradient with

respect to the spline coefficients, } k, of u(t) is computed using the chain-rule as follows,

df (| , u)

d } k
=

N

i=1
Σ

r

j=1
Σ df (| , u)

dui , j

dui , j

d } k
, k = 1, . . . ,N + ~ − 1 ,

where~ is the order of the spline representation.Most of the terms in the outer summation are

zero because the spline basis elements have local support.The quantity

dui , j

d } k
= � tN ,r ,k({ i , j)

is easily determined from the recurrence relation (2.7.2a) for the B-spline basis.

A general formula fordf /dui , j is given in Theorem 2.5.1.However, due to the special struc-

ture of the specific RK methods used bysimulate there is a much more efficient formula, discov-

ered by Hager[42]. We hav eextended Hager’s formula to deal with the various constraints and

the possibility of repeated control samples (see Chapter 2.4).To describe this formula, we use the

notation fork = 1, . . . ,N − 1 and j = 1, . . . ,s,

Ak, j =. hx({ k, j , yk, j , u({ k, j))
T ,

Bk, j =. hu({ k, j , yk, j , u({ k, j))
T ,

lx�k, j =. l � x({ k, j , yk, j , u({ k, j))
T ,

and

lu� k, j =. l �u({ k, j , yk, j , u({ k, j))
T .

where, withak, j parameters of the Runge-Kutta method,

- 195 - Chap. 5

yk,1 =. xk , yk, j =. xk + ∆k

j−1

m=1
Σ a j ,mh(yk,m, u(� k,m)) , j = 2, . . . ,s .

The quantitiesyk, j are estimates ofx(� k, j), see equation (2.4.3d).

The gradients of the objective and constraint functions with respect to the controlsuk, j and

the initial conditions� are given as follows. In what follows as+1, j =. b j , qk,s = qk+1,0 and the

standard adjoint variables,pk, are given by pk = qk,0. For the objective functions, we have for� ∈∈ qo, k = N, . . . , 1,

qN+1,0 =
∂g� (� , xN+1)T

∂xN+1
,

qk, j = qk+1,0 + ∆k

s

m= j+1
Σ as− j+1,s−m+1(Ak,mqk,m + lx�k,m+1) , j = s− 1,s− 2, . . . , 0

df � (� , u)

du

T

k, j

= b j ∆k

Bk, j qk, j + l � k, j

, j = 1, . . . ,s ,

df � (� , u)T

d � =
∂g� (� , xN)T

∂ � + q0
1 ,

For the endpoint constraints, we have for � ∈∈ qei ∩ qee, k = N, . . . , 1,

qk, j = qk+1,0 + ∆k

s

m= j+1
Σ as− j+1,s−m+1Ak,mqk,m , j = s− 1,s− 2, . . . , 0; qN+1,0 =

∂g� (� , xN+1)T

∂xN+1
,

dg� (� , xN+1)

du

T

k, j

= b j ∆kBk, j qk, j , j = 1, . . . ,s

dg� (� , xN+1)T

d � =
∂g� (� , xN+1)T

∂ � + q0
1 ,

For the trajectory constraints, � ∈∈ qti , evaluated at the the discrete-time index

l ∈∈ { 1, . . . ,N + 1 } ,

q0
l = l � x(t l , xl , u(� l ,s))T

qk, j = qk+1,0 + ∆k

s

m= j+1
Σ as− j+1,s−m+1Ak,mqk,m , k = l − 1, . . , 1, j = s− 1,s− 2, . . . , 0;

- 196 - Chap. 5

dl� (tk, xk, u(tk))

du

T

k, j

=

î

b j ∆kBk, j qk, j

l �u(tk, xk, u(� k, j))

0

k = 1, . . . ,l − 1 , j = 1, . . . ,s

k = l ; j = 0 if l ≤ N, else j = s

otherwise

dl� (t l , xl , u(t l))
T

d � = q0
1 .

For method RK4, we have the special situation that� k,2 = � k,3 for all k because

c2 = c3 = 1/2. Hence,there is a repeated control sample:uk,2 = u(� k,2) = u(� k,3). Thus,for any

function f , the derivatives with respect touk,1, uk,2 anduk,3 are given by the expressions,

df

duk,1
=

df

du

 k,1

,
df

duk,2
=

df

du

 k,2

+

df

du

 k,3

,
df

duk,3
=

df

du

 k,4

.

Variable Step-Size Integrator (LSODA). For the variable step-size integrator, LSODA, the

adjoint equations and gradients are given by the equations below which require knowledge ofx(t)

for all t ∈∈ [a, b]. As in [25], x(t) is stored at the internal knots{ tk + i
nknots+1 ∆k } nknots+1,N+1

i=0,k=1 dur-

ing the forward system integration. Bydefault, nknots = 1, but the user can specifynknots ≥ 1 by

settingialg(2) = nknots (see description ofsimulate, form 1). Then, during the computation of

the adjoints and gradients,x(t) is determined by evaluating the quintic† Hermite polynomial

which interpolates (t, x(t), ẋ(t)) at the nearest three internal knots within the current time interval

[tk, tk+1]. Usuallynknots = 1 is quite sufficient.

We now giv e the formulae for the adjoints and the gradients.It is important to note that,

unlike the fixed step-size integrators, the gradients produced by LSODA are not exact. Rather,

they are numerical approximations to the continuous-time gradients for the original optimal con-

trol problem. The accuracy of the gradients is affected by the integration tolerance and the num-

ber of internal knots used to store values ofx(t). Undernormal circumstances, the gradients will

be less accurate than the integration tolerance.For the objective functions,� ∈∈ qo,

ṗ = − (hx(t, x, u)T p + l � x(t, x, u)T) , t ∈∈ [a, b] ; p(b) =
∂g� (� , x(b))T

∂x(b)

† The order of the Hermite polynomial can be changed by setting the define’d symbol ORDER in the code adams.c.If the tra-
jectories are not at least five time differentiable between breakpoints, then it may be helpful to reduce the ORDER of the Hermite
polynomials and increasenknots.

- 197 - Chap. 5

df � (� , u)

d � k

T

= ∫
b

a
(hu(t, x, u)T p(t) + l �u(t, x, u)T) � tN ,� ,k(t)dt , k = 1, . . . ,N + � − 1

df � (� , u)T

d � =
∂g� (� , x(b))T

∂ � + p(a) .

For the endpoint constraints,� ∈∈ qei ∩ qee,

ṗ = − hx(t, x, u)T p , t ∈∈ [a, b] ; p(b) =
∂g� (� , x(b))T

∂x(b)

dg� (� , u)

d � k

T

= ∫
b

a
hu(t, x, u)T p(t) � tN ,� ,k(t)dt , k = 1, . . . ,N + � − 1

dg� (� , u)T

d � =
∂g� (� , x(b))T

∂ � + p(a) .

For the trajectory constraints,� ∈∈ qti , evaluated at timet = t l , l ∈∈ { 1, . . . ,N + 1 } ,

ṗ = − hx(t, x, u)T p , t ∈∈ [a, t l] ; p(t l) = l � x(t l , x(t l), u(t l))
T

dl� (t l , xl , u(t l))

d � k

T

= ∫
tl

a
hu(t, x, u)T p(t) � tN ,� ,k(t)dt , k = 1, . . . ,N + � − 1

dl� (t l , xl , u(t l))
T

d � = p(a) .

The numerical evaluation of the integrals in these expressions is organized in such a way that they

are computed during the backwards integration of ṗ(t). Also, the computation takes advantage of

the fact that the integrands are zero outside the local support of the spline basis elements

� tN ,� ,k(t).

- 198 - Chap. 5

> V GJ>A�QNM��Gd�RBED

Purpose

This function provides a check for the accuracy of the user-supplied derivatives Dh, Dl andDg by

comparing these functions to derivative approximations obtained by applying forward or central

finite-differences to the corresponding user-supplied functionh, l andg.

Calling Syntax

[errorA,errorB,max_error] = check_deriv(x,u,t,{params},{index},
{central},{DISP})

Description

The inputsx ∈∈ IRn, u ∈∈ IRm and t ∈∈ IR giv e the nominal point about which to evaluate the

derivatives hx(t, x, u), hu(t, x, u), l � x(t, x, u), l �u(t, x, u), g� x(t, x, u) and g�u(t, x, u). If there are sys-

tem parameters (see description ofinit in §3), they must supplied by the inputparams. If speci-

fied,index indicates the discrete-time index for whicht(index) ≤ t ≤ t(index+1). This

is only needed if one of the user-supplied system functions uses the discrete-time index passed in

neq[3].

The error in each derivative is estimated as the difference between the user-supplied

derivative and its finite-difference approximation.For a generic functionf (x), this error is com-

puted, withei the i-th unit vector and� i a scalar, as

E =
f (x) − f (x + � i ei)� i

−
df (x)

dx
ei ,

if forward differences are used, or

E =
f (x − � i ei) − f (x + � i ei)

2� i
−

df (x)

dx
ei ,

if central differences are used.The perturbation size is� i = � 1/3
machmax { 1, |xi | } . Central differ-

ence approximations are selected by setting the optional argumentcentral to a non-zero value.

Otherwise, forward difference approximations will be used.

The first term in the Taylor expansion ofE with respect to� i is of order isO(� 2
i) for central

differences andO(� i) for forward differences. Moredetails can be found in[129, Sec. 4.1.1].

Thus, it is sometimes useful to perform both forward and central difference approximations to

- 199 - Chap. 5

decide whether a large difference between the derivative and its finite-difference approximations

is due merely a result of scaling or if it is actually due to an error in the implementation of the

user-supplied derivative. If the derivative is is correct thenE should decrease substantially when

central differences are used.

If DISP=0, only the maximum error is displayed.

The outputserrorA anderrorB return the errors forhx(t, x, u) and hu(t, x, u) respec-

tively. The outputmax_error is the maximum error detected for all of the derivatives.

Example

The following example compares the output fromcheck_deriv using forward and central finite-

differences. Thederivatives appear to be correct since the errors are much smaller when central

differences are used.First forward differences are used, then central differences.

>> check_deriv([-5;-5],0,0);
==

System matrices:
Error in h_x =

1.0e-04 *

0 -0.0000
-0.0000 -0.6358

Error in h_u =
1.0e-10 *

0
0.9421

For function 1:
Error in l_x = 1.0e-04 *

-0.3028 0

Error in l_u = 6.0553e-06

For function 1:
Error in g_x0 = 0 0

Error in g_xf = 0 0

Maximum error reported is 6.35823e-05.
==

- 200 - Chap. 5

>> check_deriv([-5;-5],0,0,[],0,1);
==

System matrices:
Error in h_x =

1.0e-10 *

0 -0.0578
-0.2355 -0.3833

Error in h_u =
1.0e-10 *

0
0.9421

For function 1:
Error in l_x = 1.0e-10 *

0.5782 0

Error in l_u = 0

For function 1:
Error in g_x0 = 0 0

Error in g_xf = 0 0

Maximum error reported is 9.42135e-11.
==

See Also: check_grad

- 201 - Chap. 5

> V GJ>A�QN Z �R=?�

Purpose

This function checks the accuracy of gradients of the objective and constraint functions, with

respect to controls and initial conditions, as computed bysimulate, forms 1 and 2.It also pro-

vides a means to indirectly check the validity of the user-supplied derivativeDh, Dl andDg.

Calling Syntax

max_error = check_grad(i,j,k,x0,u,t,ialg,{params},{central},
{DISP})

Description

The input x0, u, t and ialg specify the inputs to the nominal simulationsimu-

late(1,x0,u,t,ialg,0)prior to the computation of the gradients.The gradients are tested at the dis-

crete-time indices as specified in the following table:

Index Purpose

i Spline coefficient controlu that will be perturbed.If i=0, the
gradients with respect tou will not be checked.

j Index of initial state vector, � , that will be perturbed.If j=0, the
gradients with respect to the� will not be checked.

k For each trajectory constraints,k indicates the discrete-time in-
dex, starting withk=1, at which the trajectory constraints will be
evaluated. Ifk=0, the trajectory constraint gradients will not be
checked.

The finite-difference computations are the same as described forcheck_deriv.

If there are system parameters (see description ofinit , § 3), these must be given by the input

params. Central difference approximations will be used if a non-zero value forcentral is

specified; otherwise forward differences will be used.If DISP=0, only the maximum error is

displayed. Thisis particularly useful ifcheck_deriv is used in a loop on any of the indices

i,j,k. The outputmax_error is the maximum error detected in the gradients.

- 202 - Chap. 5

Example

The following example checks the tenth component of the control gradient and the second com-

ponent of initial condition gradient as computed by RK2 using central differences. Theintegra-

tion is performed on the time interval t ∈∈ [0, 2. 5]with N = 50 intervals. Thegradients are evalu-

ated for the second order spline controlu(t) = 1 for all t (i.e., � k = 1, k = 1, . . . ,N + 1).

>> t = [0:2.5/50:2.5];
>> u = ones(1,51);
>> x0 = [-5;-5];
>> check_grad(10,2,0,x0,u,t,2,[],1);
==
Using perturbation size of 6.05545e-06

Evaluating function 1.
error_u = 1.84329e-09
error_x0 = -4.88427e-11
Relative error in control gradient = 2.52821e-07%
Gradient OK

Relative error in x0 gradient = 1.14842e-09%
Gradient OK

Evaluating endpoint constraint 1.
error_u = -5.46737e-11
error_x0 = -5.98271e-12
Relative error in control gradient = 6.04337e-08%
Gradient OK

Relative error in x0 gradient = 1.87846e-09%
Gradient OK
Maximum error reported is 1.84329e-09.
==

See Also: check_deriv

- 203 - Chap. 5

GJD?= W NReEPS>

Purpose

This function provides a convenient interface tosimulate, form 2, for computing function and

gradient values. Asystem simulation must already have been performed for this function to

work.

Calling Syntax

[f,du,dx0,p] = eval_fnc(type,num,k)

Description of Inputs

type A string that specifies the type of function to be evaluated. Thechoices are

’obj’ Objective function
’ei’ Endpoint inequality constraint
’ee’ Endpoint equality constraint
’traj’ Trajectory constraint

num Specifies� for the function of the type specified bytype is to be evaluated.

k For trajectory constraints only. Specifies the index for the time,tk, in the current

integration mesh at which to evaluate the trajectory constraint.If k is a vector, the

trajectory constraint will be evaluated at the times specified by each mesh point index

in k.

Description of Outputs

f The function value.

du The gradient with repect tou. Not computed for trajectory constraints ifindex is a

vector.

dx0 The derivative of the function with respect to initial conditions,� . Not computed for

trajectory constraints ifindex is a vector.

p The adjoint trajectory. Not computed for trajectory constraints ifindex is a vector.

- 204 - Chap. 5

Examples

The following examples assume that a simulation has already been performed on a system that

has at least two endpoint equality constraints and a trajectory constraint.The first call toev al_fnc

evaluates the second endpoint equality constraint.

>> f=eval_fnc(’ee’,2)

f =

0.2424

Since equality constraints should evaluate to zero, this constraint is violated.This next call evalu-

ates the first trajectory constraint at the timestk, k = 5, . . . , 15,in the current integration mesh.

>> eval_fnc(’traj’,1,5:15)

ans =

Columns 1 through 7

-1.0182 -1.0222 -1.0258 -1.0288 -1.0311 -1.0327 -1.0338

Columns 8 through 11

-1.0335 -1.0318 -1.0295 -1.0265

Since inequality constraints are satisfied if less than or equal to zero, this trajectory constraint is

satisfied at these specified points.

- 205 - Chap. 5

6. OPTIMIZATION PROGRAMS

This section describes the suite of optimization programs that can be used to solve various cases

of the optimal control problemOCP. These programs seek local minimizers to the discretized

problem. Themost general program isriots which converts OCP into a mathematical program

which is solved using standard nonlinear programming techniques.Currently, riots can be linked

with one of two sequential quadratic programming (SQP) algorithm as described later. Besides

being able to solve the largest class of optimal control problems,riots is also the most robust

algorithm amongst the optimization programs available in RIOTS. However, it can only handle

medium size problems.The size of a problem, the number of decision variables, is primarily

determined by the number of control inputs and the discretization level. What is meant by

medium size problems is discussed in the description ofriots.

The most restrictive program ispdmin which can solve optimal control problems with con-

straints consisting of only simple bounds on� andu. State constraints are not allowed. Thealgo-

rithm used bypdmin is the projected descent method described in Chapter 3.Because of the effi-

ciency of the projected descent method,pdmin can solve large problems.

Problems that have, in addition to simple bounds onu and � , endpoint equality constraints

can be solved byaug_lagrng. The algorithm is a multiplier method which relies uponpdmin to

solve a sequence of problems with only simple bound constraints.This program provides a good

example of how the toolbox style of RIOTS can be used to create a complex algorithm from a

simpler one.Currently, the implementation ofaug_lagrng is fairly naive and has a great deal of

room left for improvement. Also,it would be relatively straightforward to add an active set strat-

egy to aug_lagrng in order to allow it to handle inequality constraints.

Finally, the programouter is an experimental outer loop which repeatedly callsriots to

solve a sequence of increasingly accurate discretizations (obtained by calls todistrib ute) of OCP

in order to efficiently compute the optimal control to a specified accuracy.

Choice of Integration and Spline Or ders.

Each of these optimization programs requires the user to select an integration routine and the

order of the spline representation for the controls.There are several factors involved in these

selections. Someof these factors are discussed below and summarized in the Table O2 that fol-

lows. ConsultChapter 4.2 for a more in-depth discussion.

Fixed step-size integration. The first consideration is that, for each of the fixed step-size

Runge-Kutta methods, there is a limit to how much accuracy can be obtained in the control solu-

tions at certain discrete time points.The accuracy, ||uN
* − u* ||, of the control splines can not be

- 206 - Chap. 5

greater than the solutions at these time points.The order of the accuracy of spline solutions with

respect to the discretization level for unconstrainedproblems is given in the following table. The

quantity∆ used in this table is defined as∆ =. maxk tN,k+1 − tN,k. The third column is a reminder

of the spline orders that are allowed bysimulate for each RK method.

Table O1

RK Method Order of Accuracy Allowable Spline Orders

1 O(∆1) 1

2 O(∆2) 2

3 O(∆2) 2

4 O(∆3) 2, 3, 4

While it is possible with some optimal control problems to achieve higher order accuracies, this is

a non-generic situation.The order of spline representation should therefore not exceed the accu-

racies listed in the second column of this table.Thus, for RK4, even though cubic splines are

allowed there is usually no reason to use higher than quadratic splines (� = 3).

The orders listed in the above table are usually only achieved for unconstrained problems.

For problems with control constraints it is typically impossible to achieve better than first order

accuracy. This is even true if the discontinuities in the optimal control are known a priori since

the locations of these discontinuities will not coincide with the discontinuities of the discretized

problems. For problems with state constraints, the issue is more complicated.In general, we rec-

ommend using second order splines (except for Euler’s method) for problems with control and/or

trajectory constraints.Even if first order accuracy is all that can be achieved, there is almost no

extra work involved in using second order splines.Furthermore, second order splines will often

give somewhat better results than first order splines even if the accuracy is asymptotically limited

to first order.

A second consideration is that the overall solution error is due to both the integration error

and the error caused by approximating an infinite dimensional function, the optimal control, with

a finite dimensional spline.Because of the interaction of these two sources of error and the fact

that the accuracy of the spline representations is limited to the above table, improving the integra-

tion accuracy by using a higher order method does not necessarily imply that the accuracy of the

solution to the approximating problem will improve. Howev er, even if the spline accuracy is lim-

ited to first order, it is often the case that the integration error, which is of orderO(∆s), wheres is

the order of the RK method, still has a significantly greater effect on the overall error than the

spline error (especially at low discretization levels). Thisis partly due to the fact that errors in the

- 207 - Chap. 5

control are integrated out by the system dynamics.Thus, it is often advantageous to use higher-

order integration methods even though the solution error is asymptotically limited to first order by

the spline approximation error.

The importance of the RK order, in terms of reducing the overall amount of computational

work required to achieve a certain accuracy, depends on the optimization program being used.

Each iterations ofriots requires the solution of one or more dense quadratic program.The

dimension of these quadratic programs is equal to the number of decision parameters (which is

m(N + � − 1) plus the number of free initial conditions).Because the work required to solve a

dense quadratic program goes up at least cubically with the number of decision variables, at a cer-

tain discretization level most of the work at each iteration will be spent solving the quadratic pro-

gram. Thus,it is usually best to use the fourth order RK method to achieve as much accuracy as

possible for a given discretization level. An exception to this rule occurs when problemOCP

includes trajectory constraints.Because a separate gradient calculation is performed at each mesh

point for each trajectory constraint, the amount of work increases significantly as the integration

order is increased.Thus, it may be beneficial to use a RK3 or even RK2 depending on the prob-

lem.

On the other hand, for the optimization programspdmin andaug_lagrng (which is based

on pdmin) the amount of work required to solve the discretized problem is roughly linear in the

number of decision variables which is basically proportional to the discretization level N. The

amount of work required to integrate the differential equations is linearly proportional toNs

where s the order of the Runge-Kutta method.Since the integration error is proportional to

1 / Ns, if not for the error for the spline approximation it would always be best to use RK4.How-

ev er, because there is error from the finite dimensional spline representation, it does not always

pay to use the highest order RK method.If, roughly speaking, the error from the control repre-

sentation contributes to the overall error in the numerical solution to larger extent than the integra-

tion error (note that the spline error and the integration error are in different units) then it is

wasteful to use a higher order RK method.This usually happens only at high discretization lev-

els.

The relative effect of the spline error versus the integration error depends on the nature of

the system dynamics and the smoothness of the optimal control.Unfortunately, this is hard to

predict in advance. Buta sense of the balance of these errors can be obtained by solving, if possi-

ble, the problem at a low discretization level and viewing the solution usingsp_plot and using

simulate (form 7) orest_errors to obtain an estimate of the integration error.

There is a third consideration for selecting the integration order. For some problems with

particularly nonlinear dynamics, in may not be possible integrate the differential equation if the

- 208 - Chap. 5

discretization level is too small. In these cases, the minimum discretization level needed to pro-

duce a solution is smallest when using RK4.For some problems, it may not be possible to

achieve an accurate solution of the differential equation at any reasonable discretization level. For

these problems, the variable step-size integration method, discussed next, will have to be used.

Regardless of the integration method used, higher order splines (� > 2) should not be used

unless the optimal control is sufficiently smooth.Of course, the optimal control is not known in

advanced. Generally, though, when solving control and/or trajectory constrained problems, sec-

ond order splines should be used (except with Euler’s method which can only use first order

splines) as per the discussion above. For other problems being integrated with RK4, it may be

advantageous to use quadratic splines.

The following table provides a set of basic guidelines for the selection of the integration

method and the spline order for solving different classes of problems.These choices may not be

ideal for any specific problem but they are generally acceptable for most problems.

Table O2

RK order spline order

(ialg) (�)
type of problem optimization program

4 (N small) 3(N small)

2 (N large) 2(N large)
pdmin/aug_lagrng

riots 4 3

no control nor trajectory con-
straints

4 (N small)

2 (N large)
pdmin/aug_lagrng

riots 4

control constraints 2

trajectory constraints riots 2† 2

Variable step-size integration. From the point of view of integrating differential equations, it

is much more efficient to use a variable step-size integration routine than a fixed step-size method.

However, this is usually not the case when solving optimal control problems.There are three

basic reasons for this.First, the overall solution accuracy cannot exceed the accuracy with which

splines can approximate the optimal control.Thus, it is quite conceivable that a great deal of

work will be spent to achieve a very accurate integration but this effort will be wasted on a rela-

tively inaccurate solution.Second, the solution of the discretized problem can easily involve

† Sometimes a higher-order method must be used to provide a reasonable solution to the system differential equations.

- 209 - Chap. 5

hundreds of simulations.The integration accuracy during most of the simulations will have very

little affect on the accuracy of the final solution.Therefore, it is usually much more efficient to

solve a sequence of discretized problems, each with a more accurate integration mesh, using a

fast, fixed step-size integration method.Third, the gradients produced for the variable step-size

method are approximations to the actual, continuous-time gradients for the original problem

OCP; they are not exact gradients for the discretized problems.Thus, the solution of the dis-

cretized problem will usually require more iterations and will be less accurate (relative to the

actual solution of the discretized problem) when using the variable step-size method than when

using one of the fixed step-size integration routines.

There are, however, situations in which it is best to use the variable step-size integration

method. Thefirst situation is when the system dynamics are very difficult to integrate. Inthis

case, or any other case in which the the integration error greatly exceeds the spline approximation

error, it is more efficient to use the variable step-size method.In some cases, the integration has

to be performed using the variable step-size method.This can occur if the system is described by

stiff differential equations or if the system contains highly unstable dynamics.

Another situation in which it can be advantageous to use the variable step-size integration

method is if the location of discontinuities in the optimal control, or discontinuities in the

derivatives of the optimal control, are known a priori . In this case, it may be possible to increase

the solution accuracy by placing breakpoints in the discretization mesh where these discontinu-

ities occur and then using a spline of order one greater than the overall smoothness of the optimal

control†. The location of the discontinuity for the discretized problem will be very close to the

discontinuity in the optimal control if the integration tolerance is small and the optimal control is

well-approximated by the spline away from the discontinuity. Hence, the overall accuracy will

not be limited by the discontinuity.

The variable step-size integration routine can use first, second, third, or fourth order splines.

For unconstrained problems, or problem with endpoint constraints, it is best to use fourth order

splines so that the spline approximation error is as small as possible.For problems with control

and/or trajectory constraints, first or second order splines are recommended.

† A spline of higher order would be too smooth since RIOTS currently does not allow splines with repeated interior knots.

- 210 - Chap. 5

Coor dinate T ransf ormation

All of the optimization programs in RIOTS solve finite-dimensional approximations toOCP

obtained by the discretization procedure described in the introduction of Section 5.Additionally,

a change of basis is performed for the spline control subspaces.The new basis is orthonormal.

This change of basis is accomplished by computing the matrixM � with the property that for any

two splinesu(⋅) and v(⋅) with coefficients and¡ ,

/
\ u, v \

/ L2
= /

\ M � , ¡ \
/ ,

(recall that and ¡ are row vectors. Thesplines coefficients in the transformed basis are given

by ∼ = M1/2� and¡ ∼ = ¡ M1/2� (see Section 6 and Remark A.2.8).In the new coordinates,

/
\ u, v \

/ L2
= /

\ ∼ , ¡ ∼ \
/ .

In words, theL2-inner product of any two splines is equal to the Euclidean inner product of their

coefficients in the new basis. Thematrix M � is referred to as thetransform matrixand the

change of basis is referred to as thecoordinate transformation.

By performing this transformation, the standard inner-product of decision variables (spline

coefficients) used by off-the-shelf programs that solve mathematical programs is equal to the

function space inner product of the corresponding splines.Also, because of the orthonormality of

the new basis, the conditioning of the discretized problems is no worse than the conditioning of

the original optimal control problemOCP. In practice, this leads to solutions of the discretized

problems that are more accurate and that are obtained in fewer iterations than without the coordi-

nate transformation.Also, any termination criteria specified with an inner product become inde-

pendent of the discretization level in the new basis.

In effect, the coordinate transformation provides a natural column scaling for each row of

control coefficients. It is recommended that, if possible, the user attempt to specify units for the

control inputs so that the control solutions have magnitude of order one.Choosing the control

units in this way is, in effect, a row-wise scaling of the control inputs.

One drawback to this coordinate transformation is that for splines of order two and higher

the matrixM−1/2� is dense.A diagonal matrix would be preferable for two reasons. First,comput-

ing M−1/2� is computationally intensive for large N. Second, there would be much less work

involved in transforming between bases: each time a new iterate is produced by the mathematical

programming software, it has to be un-transformed to the original basis.Also, every gradient

computation involves an inverse transformation.Third, simple control bounds are converted into

general linear constraints by the coordinate transformation.This point is discussed next.

- 211 - Chap. 5

Control bounds under the coordinate transformation. Simple bounds on the spline coeffi-

cients takes the formak ≤ ¢ k ≤ bk, k = 1, . . ,N + £ − 1. If ak andbk are in fact constants,a and

b, then for allt, a ≤ u(t) ≤ b. Now, under the coordinate transformation, simple bounds of this

form become

(a1 , . . . , ¢ N+¤ −1) ≤ ¢ ∼ M−1/2¥ ≤ (b1 , . . . , bN+¤ −1) .

Thus, because of the coordinate transformation, the simple bounds are converted into general lin-

ear bounds.Since this is undesirable from an efficiency point of view, RIOTS instead replaces the

bounds with

(a1 , . . . , ¢ N+¤ −1)M1/2¥ ≤ ¢ ∼ ≤ (b1 , . . . , bN+¤ −1)M1/2¥ .

For first order splines, these bounds are equivalent to the actual bounds sinceM1/2¥ is diagonal.

For higher order splines, these bounds are not equivalent. They are, however, approximately cor-

rect since the entries of the matrixM ¥ fall off rapidly to zero away from the diagonal.

It turns out that the problems enumerated above can be avoided when using second order

splines which are, in any case, the recommended splines for solving problems with control

bounds. Insteadof usingM ¥ in the coordinate transformation, the diagonal matrix

M =

∆1
∆1 + ∆2

2 ∆2 + ∆3

2 . . .
∆N−1 + ∆N

2
∆N

,

with ∆k =. tN,k+1 − tN,k, is used. Thistransformation matrix is derived in (2.7.19c) and retains the

important attributes of the transformation given by M ¥ . In riots andpdmin, M is used for the

coordinate transformation, instead ofM ¥ , when second order splines are used if(i) problem

OCP has control bounds or if(ii) RK2 is being used as the integration method.

If higher than second order splines are to be used with control bounds and exact bound sat-

isfaction is required, then the transform mechanism should be disabled by settingTRANS-

FORM=0 in riots and/orpdmin†. Finally, whenN is large,£ ≥ 1 and RK3 or RK4 is being used,

the computation of the square-root ofM ¥ can take a very long time.In this case if the discretiza-

tion level N is greater than about 300, the transform mechanism should also be disabled.

† In pdmin, setting TRANSFORM=0 causes the transform mechanism to be disabled for splines of greater than two. For sec-
ond order splines,M is used regardless of the RK method and for first order (piecewise constant) splines, the usual, diagonal, transfor-
mation is used.

- 212 - Chap. 5

Description of the Optimization Pr ograms

The first six inputs are the same for all of the optimization programs; they are listed in the follow-

ing table. Default values for vectors apply to each component of that vector. Specifying[] for

an input causes that input to be set to its default value. Inthe following, N is the discretization

level and ¦ is the order of the control splines.

Table O3

Input Rows Columns Description

x0 n 1, 2 or 4 x0=[x0,{fixed,{x0min,x0max}}] where

x0 is the nominal value of the initial state§ .
fixed For eachi such thatfixed(i)=0, the cor-

responding initial state value § i is treated as a

free decision variable. Default: 1

x0min Specifies lower bound for each free initial

condition § i . Default:−∞
x0max Specifies upper bound for each free initial

condition § i . Default:∞
u0 m N + ¦ − 1 Initial guess for the spline coefficients of the controlu.

t 1 N + 1 The integration mesh points/spline breakpoints.

Umin m N + ¦ − 1 or 1 Lower bounds on the spline coefficients foru. If Umin
is specified as a single column, its values will apply as a
lower bound on all of the spline coefficients. Default:
−∞

Umax m N + ¦ − 1 or 1 Upper bounds on the spline coefficients foru. If Umax
is specified as a single column, its values will apply as
an upper bound on all of the spline coefficients. Default:

∞
params p 1 Provides the system parameters if required.

The first two outputs are the same for all of the optimization programs; they are listed in the fol-

lowing table:

Table O4

Output Rows Columns Description

u m N + ¦ − 1 The optimal control solution.
x n N + 1 The optimal state trajectory solution.

- 213 - Chap. 5

=?l Z N W = Z �¨P Z

Purpose

This function usespdmin as an inner loop for an augmented Lagrangian algorithm the solves

optimal control problem with, in addition to simple bounds on© and u, endpoint equality con-

straints. Onlyone objective function is allowed.

Calling Syntax

[u,x,f,lambda,I_i] = aug_lagrng([x0,{fixed,{x0min,x0max}}],u0,t,
Umin,Umax,params,N_inner,N_outer,
ialg,{method},{[tol1,tol2]},{Disp})

Description of the Inputs

The first six inputs are described in Table O3.

N_inner Maximum number of iterations for each inner loop call topdmin.

N_outer Maximum number of outer iterations.

ialg Specifies the integration algorithm used bysimulate.

method Specifies the method for computing descent directions in the unconstrained sub-

space. Thechoices are explained in the description ofpdmin. Default:’vm’.

tol1,tol2 Optimality tolerances.Default: [ª 1/2
mach , ª 1/3

mach]. Theouter loop terminates if

||∇ f («) −
qee

¬ = 1
Σ ¬ ∇ g

¬
ee(«)|| ≤ tol1(1 + | f («)|)

and

¬ ∈∈ qee

max |g
¬
ee(«)| ≤ tol2 .

Disp Passed on topdmin to control amount of displayed output.Default: 0.

Description of the Outputs

The first two outputs are described in Table O4.

f The objective value at the obtained solution.

I_i Index set of elements of [u(:) ; ©] that are not at their bounds.

- 214 - Chap. 5

lambda Vector of Lagrange multipliers associated with the endpoint equality constraints.

Description of the Algorithm

This program callspdmin to minimize a sequence of augmented Lagrangian functions of the

form

Lc,® (̄) = f (̄) −
qee

° = 1
Σ ± ° g

°
ee(¯) +

1

2

qee

° = 1
Σ c° g

°
ee(¯)2

subject to simple bounds on² andu. The value of the augmented Lagrangian and its gradient are

supplied topdmin by a_lagrng_fncvia extension 1 (see description ofpdmin).

The values of the Lagrange multiplier estimates± ° , ³ = 1, . . . ,qee, are determined in one of

two ways depending on the setting of the internal variableMETHOD in aug_lagrng.m.Initially

± ° = 0, ³ = 1, . . . ,qee.

Multiplier Update Method 1. This method adjusts the multipliers at the end of each iteration

of pdmin by solving the least-squares problem

± = ® ∈∈ IRqee
min ||∇ f (̄) −

qee

° = 1
Σ ± ° ∇ g

°
ee(̄)||2I _i ,

where the norm is taken only on the uncstrained subspace of decision variables which is indicated

by the index setI_i. This update is performed bymultiplier_update which is called bypdmin

via extension 2. If update method 1 is used, the tolerance requested for the inner loop is

decreased by a factor of ten on each outer iteration starting from 10min { 6,N_outer } ´ 1/2
mach until the

tolerance iś 1/2
mach.

Multiplier Update Method 2. This method is the standard ‘‘method of multipliers’’ which

solves the inner loop completely and then uses the first order multiplier update

± ° ← ± ° − c° g
°
ee(¯) , \/ µ ∈∈ I°

where

I° =. { ³ ∈∈ qee | |g
°
ee(̄)| ≤ 1

4 |g
°
ee(¯ previous)| or |g

°
ee(̄)| ≤ tol2 } .

If update method 2 is used, the tolerance requested for the inner loop is fixed at́ 1/2
mach.

- 215 - Chap. 5

Penalty Update. The initial values for the constraint violation penalties arec¶ = 1,· = 1, . . . ,qee. It may be helpful to use larger initial values for highly nonlinear problems.The

penalties are updated at the end of each outer iteration according to the rule

c¶ ← 10c¶ , \/ ¸ /∈ I¶ ,

whereI ¶ is as defined above.

Note that this algorithm is implemented mainly to demonstrate the extensible features ofpdmin

and is missing features like, (i) constraint scaling,(ii) an active set method for handling inequality

endpoint constraints,(iii) a mechanism for decreasing constraint violation penalties when possi-

ble and, most importantly, (iv) an automatic mechanism for setting the termination tolerance for

each call topdmin.

Notes

1. Onreturn from a call toaug_lagrng, the variableopt_program will be defined in the Mat-

lab workspace. Itwill contain the string’aug_lagrng’.

See Also: pdmin, a_lagrng_fnc.m, multiplier_update.m.

- 216 - Chap. 5

¹?lQ@HGJ�

Purpose

This program callsriots to solve problems defined on a sequence of different integration meshes,

each of which result in a more accurate approximation toOCP than the previous mesh.The solu-

tion obtained for one mesh is used as the starting guess for the next mesh.

Calling Syntax

[new_t,u,x,J,G,E] = outer([x0,{fixed,{x0min,x0max}}],u0,t,
Umin,Umax,params,N_inner,[N_outer,{max_N}]
ialg,{[tol1,tol2,tol3]},{strategy},{Disp})

Description of the Inputs

The first six inputs are described in Table O3.

N_inner Maximum number of iterations for each inner loop ofriots.

N_outer Maximum number of outer iterations.

max_N The maximum discretization level; outer will terminate if the discretization level

exceedsmax_N. Default:∞
ialg Specifies the integration algorithm used bysimulate.

tol1,tol2,tol3

Optimality tolerances.The outer loop terminates if

||∇ L(º)|| ≤ tol1(1 + | f (º)|) ,

where ||∇ L(º)||I is theH2-norm of the free portion of∇ L(º),

» ∈∈ qee

max |g
»
ee(º)| ≤ tol2 ,

and

||uN − u* || ≤ tol3(1 + ||uN ||∞)b ,

whereb is the nominal final time.The default values for these tolerances factors

are [¼ 1/3
mach, ¼ 1/4

mach, ¼ 1/6
mach].

strategy Passed on to distrib ute to select the mesh redistribution strategy.

Default = 3.

Disp Passed on toriots to control amount of displayed output.Default = 1.

- 217 - Chap. 5

Description of the Outputs

The first two outputs are described in Table O4.

new_t The final integration mesh obtained from the final mesh redistribution.

u The optimal control solution defined on the final meshnew_t.

x The optimal trajectory solution.

J A row vector whosei-th component is the value of the objective function, computed

using LSODA, after thei-th call toriots.

G A row vector whosei-th component is the sum of the constraint violations, computed

using LSODA, after thei-th call toriots.

E A row vector whosei-th component is an estimate of ||½ N − ½ * ||H2
after the (i + 1)-th

iteration. With ½ = (u, ¾), ||½ ||H2
is defined by

||½ ||H2
=.

||¾ ||2 + ∫

b

a
||u(t)||22dt

1/2

.

Description of Algorithm

outer is an outer loop forriots. During each iteration,riots is called to solve the discretized

problem on the current mesh starting from the solution of the previous call toriots interpolated

onto the new mesh. Afterriots returns a solution,est_errors and control_error are called to

provide estimates of certain quantities that are used to determine whetherouter should terminate

or if it should refine the mesh.If necessary, the mesh is refined bydistrib ute, with FAC=10,

according tostrategy except following the first iteration.After the first iteration, the mesh is

always doubled.

After each iteration, the following information is displayed: theH2-norm of the free portion

of the gradient of the Lagrangian, the sum of constraint errors, objective function value, and inte-

gration error of the integration algorithmialg at the current solution.All of these quantities are

computed byest_errors. The first three values are estimates obtained using LSODA with a toler-

ance set to about one thousandth of the integration error estimate.The control solution is plotted

after each iteration (although the time axis is not scaled correctly for free final time problems).

Additionally, following all but the first iteration, the change in the control solution from the

previous iteration and an estimate of the current solution error, ||½ N* − ½ * ||H2
, are display.

- 218 - Chap. 5

Notes

1. If solutions exhibit rapid oscillations it may be helpful to add a penalty on the piecewise

derivative variation of the control by setting the variableVAR in outer.m to a small positive value.

2. Thefactor by whichdistrib ute is requested to increase the integration accuracy after each

iteration can be changed by setting the variableFAC in outer.m.

3. Anexample usingouter is given in Session 4 (§3).

See Also: riots, distrib ute, est_errors, control_error.

- 219 - Chap. 5

¿��QbcBEP

Purpose

This is an optimization method based on the projected descent method.It is highly efficient but

does not solve problems with general constraints or more than one objective function.

The user is urged to check the validity of the user-supplied derivatives with the utility pro-

gramcheck_deriv before attempting to usepdmin.

Calling Syntax

[u,x,J,inform,I_a,I_i,M] = pdmin([x0,{fixed,{x0min,x0max}}],u0,t,
Umin,Umax,params,[miter,{tol}],
ialg,{method},{[k;{scale}]},{Disp})

Description of Inputs

The first six inputs are described in Table O3.The remainder are described here.

miter The maximum number of iterations allowed.

tol Specifies the tolerance for the following stopping criteria

||gk||I k
/ |I k| < tol2/3(1 + |f(À k)|) ,

f (uk) − f (uk−1) < 100tol(1 + |f(uk)|) ,

||uk − uk−1||∞ < tol1/2(1 + ||uk||∞) ,

xi
k = 0 , \/ i ∈∈ Ak ,

wheregk is thek-th component of the derivative of f (⋅) in transformed coordinates,

I k is set of inactive bound indices andAk is set of active bound indices.Default:
Á 1/2

mach.

ialg Specifies the integration algorithm used bysimulate.

- 220 - Chap. 5

method A string that specifies the method for computing descent directions in the uncon-

strained subspace.The choices are:

’’ limited memory quasi-Newton (L-BFGS)
’steepest’ steepest descent
’conjgr’ Polak-Ribière conjugate gradient method

’vm’ limited memory quasi-Newton (L-BFGS)

The default method is the L-BFGS method.

k This value is used to determine a perturbation with which to compute an initial scal-

ing for the objective function. Typically, k is supplied from a previous call topdmin

or not at all.

scale This value is used to determine a perturbation with which to compute an initial func-

tion scaling. Typically, scale is supplied from a previous call topdmin or not at

all.

Disp Disp = 0,1,2 controls the amount of displayed output with 0 being minimal out-

put and 2 being full output.Default: 2.

Description of Outputs

The first two outputs are described in Table O4.

J A row vector whose (i + 1)-th component is the value of the objective function at the

end of thei-th iteration. The last component ofJ is the value of the objective func-

tion at the obtained solution.

I_a Index set of elements of [u(:) ; Â] that are actively constrained by bounds.

I_i Index set of elements of [u(:) ; Â] that are not constrained by bounds.

inform This is a vector with four components:

inform(1) Reason for termination (see next table).
inform(2) Function space norm of the free portion of∇ f (Ã), Ã = (u, Â).
inform(3) Final step-sizek = log Ä / logÅ where Ä is the Armijo step-

length andÅ = 3/5.
inform(4) The value of the objective function scaling.

- 221 - Chap. 5

The possible termination reasons are:

inform(1) Cause of Termination.

-1 Simulationproduced NaN or Inf.
0 Normal termination tests satisfied.
1 Completed maximum number of iterations.
2 Search direction vector too small.
3 All variables at their bounds and going to stay that way.
4 Gradient too small.
5 Step=size too small.
6 User test satisified (user test returned 2).

Description of Displa yed Output

Depending on the setting ofDisp, pdmin displays a certain amount of information at each itera-

tion. This information is displayed in columns.In the first column is the number of iterations

completed; next is the step-size,Æ = Ç k, with k shown in parenthesis; next is ||∇ f (È)||I k
which is

the norm of the gradient with respect to those decision variables that are not at their bounds; next

is a four (three if there are no upper or lower bounds) letter sequence ofT’s and F’s where aT

indicates that the corresponding termination test, described above, is satisfied; next is the value of

the objective function; and in the last column, an asterix appears if the set of indices correspond-

ing to constrained variables changed from the previous iteration.

Extensib le Features

Becausepdmin is designed to be callable by other optimization programs, it includes three exten-

sions that allow the user to customize its behavior. These extensions are function calls that are

made to user supplied subroutines at certain points during each iteration.They allow the user to

(i) construct the objective function and its gradients,(ii) specify termination criteria and perform

computations at the end of eachpdmin iteration, and(iii) add additional tests to the step-size

selection procedure.The use of the first two of these extensions is demonstrated in the program

aug_lagrng.

Extension 1. If the global variableUSER_FUNCTION_NAME is defined in Matlab’s workspace

and is a string containing the name of a valid m-file,pdmin will call that m-file, instead ofsimu-

late, to evaluate the system functions and gradients.This can be used to construct a composite

function from several different calls tosimulate. For instance, a penalty function can be formed

- 222 - Chap. 5

to convert a constrained problem into an unconstrained problem.The syntax for the user function

is

[f0,x,grad_u,grad_x0] = USER_FUNCTION_NAME(x0,u,t,ialg,action)

where the input and output variables are the same as for calls tosimulate. See a_lagrng_fnc.m

for an example.

Extension 2. If the global variableUSER_TEST_NAME is defined in Matlab’s workspace and

is a string containing the name of a valid m-file,pdmin will call that m-file at the end of each iter-

ation. Thesyntax for the user function is

user_terminate = USER_TEST_NAME(f0,x,u,grad_u,grad_x0,I_i,free_x0)

whereI_i is a column vector indexing all elements of [u(:) ; É] that are not actively constrained

by bounds andfree_x0 is the index set of free initial conditions.If the user test returns

user_terminate=1 and the other termination conditions are satisfied, thenpdmin will termi-

nate. Ifuser_terminate=2, thenpdmin will terminate without regard to the other termina-

tion tests.This function can be used solely for the purpose of performing some operations at the

end of each iteration by always returning 1.See multiplier_update.m for an example.

Extension 3. If the global variableARMIJO_USER_TEST is defined in Matlab’s workspace

and is a string containing the name of a valid m-file, the functionarmijo , which is called by

pdmin to compute the Armijo step-length, will call that m-file in order to guarantee that the step-

length satisfies

ARMIJO_USER_TEST(j,x,x0,u,t,ialg,I_i,free_x0) <= 0

wherex andu are evaluated at the current trial step-length andI_i andfree_x0 have the same

meaning as for Extension 2.This extension can be used, for instance, in a barrier function algo-

rithm to prevent trial step-lengths that are outside the region of definition of the barrier function.

Notes

The Armijo line search is discussed in Chapter 3.The following additional features are used in

the current implementation ofpdmin.

1. A scaling for the objective function is computed using the objective scaling 2 described for

riots. The primary purpose of this scaling is to prevent an excessive number of function evalua-

tions during the first line search.

- 223 - Chap. 5

2. Thestep-length adjustment mechanism will stop increasing the step-length ifk ≤ 0 and and

the next increase in step-length results in an increase in the objective function.

3. If simulate returnsNaN, the step-length will be decreased untilsimulate returns a valid

result.

4. Becauseof the coordinate transformation, the inner products in the termination tests are

inner-products inL2[a, b]. Thusthe tests are independent of the discretization level.

Bugs

1. Controlbounds can be violated if using splines of orderÊ > 2 unless the coordinate transfor-

mation is disabled by setting the variableTRANSFORM to zero in the code.

- 224 - Chap. 5

�¨BO¹?@CK

Purpose

This is the main optimization program in RIOTS. It can only be used if the user has obtained one

of two nonlinear programming algorithms: CFSQP or NPSOL†. Both of these algorithms are

based on sequential quadratic programming (SQP) methods.CFSQP is a feasible point SQP

method and NPSOL is an active-set method based on an augmented Lagrangian merit function.

With CFSQP, riots can solve OCP in its most general version. With NPSOL,riots only allows a

single objective function. Onthe other hand, because NPSOL is a highly refined, commercial

package, it is much faster and more robust than CFSQP. Multiple objective functions can be han-

dled indirectly using the transcription describe in Section 2.3.

The user is urged to check the validity of the user-supplied derivatives with the utility pro-

gramcheck_deriv before attempting to useriots.

Calling Syntax

[u,x,f,g,lambda2] = riots([x0,{fixed,{x0min,x0max}}],u0,t,Umin,Umax,
params,[miter,{var,{fd,{feasbl}}}],ialg,
{[eps,epsneq,objrep,bigbnd]},{scaling},
disp,{lambda1});

Description of Inputs

The first six inputs are described in Table O3.The remainder are described here.

miter The maximum number of iterations allowed.

var Specifies a penalty on the piecewise derivative variation‡ of the control to be added

to the objective function. Canonly be used with first and second order splines.

Adding a penalty on the piecewise derivative variation of the control is useful if rapid

oscillations are observed in the numerical solution.This problem often occurs for

singular problems[3,116] in which trajectory constraints are active along singular

† CFSQP can be obtained for free by sending a request to Prof. Andre´ Tits (andre@eng.umd.edu).NPSOL can be purchased
from Stanford Business Software, Inc., 2680 Bayshore Parkway, Suite 304, Mountain View, CA 94043, (415) 962-8719.

‡The piecewise derivative variation is smoothed to make it differentiable by squaring the terms in the summation.The smooth-
ing can also be accomplished using anl1 approximation by changing the define’d variableL1 in riots.c. However, the l1 approxima-
tion is not twice continuously differentiable and this can inhibit superlinear convergence.

- 225 - Chap. 5

arcs. Thepenalty should be ten to ten thousand times smaller than the value of the

objective function at a solution.See Chapter 4.5 for a discussion of singular control

problems and the piecewise derivative variation of the control.

fd If a non-zero value is specified, the gradients for all functions will be computed by

finite-difference approximations.In this caseDh, Dg, and Dl will not be called.

Default: 0.

feasbl (CFSQP only) If a non-zero value is specified, CFSQP will always check for con-

straint violations during its line searches before evaluating objective functions.

Default: 0.

ialg Specifies the integration algorithm used bysimulate.

eps Overall optimization tolerance.For NPSOL,eps is squared before calling NPSOL.

See the SQP user’s manual for more details.Default: 10−6.

epsneq Nonlinear constraint tolerance.Default: 10−4.

objrep For CFSQP, for problems without equality constraints, optimization will terminate if

the relative change in objective function values is less thanobjrep. For NPSOL,

objrep indicates function precision.For both, a value of 0 causes this features to

be ignored.Default: 0.

bigbnd A number large than the largest magnitude expected for the decision variables.

Default: 106.

scaling Allowable values are 00, 01, 10, 11, 12, 21, 22.Default: 00. See description below.

disp Specify zero for minimal displayed output. Default: 1.

lambda1 Only applies to NPSOL. Controls warm starts.Default: 0. See description below.

Description of Outputs

The first two outputs are described in Table O4.

f The objective value at the obtained solution.

g Vector of constraint violations in the following order (N.B. linear constraints are

treated as nonlinear constraint for systems with nonlinear dynamics):

- 226 - Chap. 5

Table O5

CFSQP NPSOL

nonlinear endpoint inequality linear endpoint inequality
nonlinear trajectory inequality linear trajectory inequality
linear endpoint inequality linear endpoint equality
linear trajectory inequality nonlinear endpoint inequality
nonlinear endpoint equality nonlinear trajectory inequality
linear endpoint equality nonlinear endpoint equality

lambda2 Vector of Lagrange multipliers.This output has two columns if NPSOL is used.The

first column contains the Lagrange multipliers.The first m(N + Ë − 1) components

are the multipliers associated with the simple bounds onu. These are followed by

the multipliers associated with the bounds on any free initial conditions.Next are the

multipliers associated with the general constraint, given in the same order as the con-

straint violations in the outputg. Last, for CFSQP, are the multipliers associated

with the objective functions. If NPSOL is being used, the second column of

lambda2 contains information about the constraints which is used byriots if a

warm start usinglambda1 is initiated (as described below).

Scaling

There are several heuristic scaling options available in riots for use with badly scaled problems.

There are two scaling methods for objective functions and two scaling methods for constraints.

These are selected by settingscaling to one of the two-digit number given in the following

table:

Table O6

scaling Objective Scaling Method Constraint Scaling Method

00 noscaling noscaling
01 nofunction scaling constraint scaling 1
10 functionscaling 1 no constraint scaling
11 functionscaling 1 constraint scaling 1
12 functionscaling 1 constraint scaling 2
21 functionscaling 2 constraint scaling 1
22 functionscaling 2 constraint scaling 2

In the following, FACTOR =10 if CFSQP is linked with riots and FACTOR =20 if NPSOL is

linked withriots. Also, Ì 0 = (u0, Í 0).

- 227 - Chap. 5

Objective Scaling 1: For eachÎ ∈∈ qo, the Î -th objective function is scaled by

Ï Ð
o =

1

1 + | f Ð (Ñ 0)|
FACTOR.

Objective Scaling 2: For eachÎ ∈∈ qo, let

S = (1+ ||Ñ 0||∞) / (100||∇ f Ð (Ñ 0)||∞)

Ò Ñ = [Ñ 0 − S∇ f Ð (Ñ 0)]# ,

Ï =
1

2

/
\
Ò Ñ ,
Ò Ñ \

/ I

f Ð (Ñ 0 +
Ò Ñ 0) − f Ð (Ñ 0) − /

\ ∇ f Ð (Ñ 0),
Ò Ñ 0

\
/ I

,

where [⋅]# is the projection operator that projects its argument into the region feasible with respect

to the simple bounds onu and Ó , and I is the set of indices ofÑ 0 corresponding to components

which are in the interior of this feasible region (Ï is the distance along the projected steepest

descent direction,
Ò Ñ , to the minimum of a quadratic fit tof (⋅)). If Ï ≥ 10−4, scale theÎ -th objec-

tive function by Ï Ðo = FACTORÏ . Otherwise, computeÏ = ||∇ f Ð (Ñ 0)||. If Ï ≥ 10−3, setÏ Ð
o = FACTORÏ . Otherwise, use function scaling 1.

Constraint Scaling 1: For eachÎ ∈∈ qei, the endpoint inequality constraints are scaled by

Ï Ð
ei =

1

max { 1, |gÐei(Ñ 0)| }
FACTOR,

for eachÎ ∈∈ qee, the endpoint equality constraints are scaled by

Ï Ð
ee =

1

max { 1, |gÐee(Ñ 0)| }
FACTOR,

and, for eachÎ ∈∈ qti , the trajectory inequality constraints are scaled by

Ï Ð
ti =

1

max { 1,
k ∈∈ { 1,...,N+1 }

max |l Ð ti (tk, xk, uk)| }
FACTOR.

Constraint Scaling 2: The trajectory constraint scalings are computed in the same way as for

constraint scaling method 1.For each Î ∈∈ qei, the endpoint inequality constraints are scaled byÏ Ð
ei = Ï and, for eachÎ ∈∈ qee, the endpoint equality constraints are scaled byÏ Ð

ee = Ï where Ï is

determined as follows. If |g(Ñ 0))| ≥ 10−3, let

Ï =
1

|g(Ñ 0)|
FACTOR,

otherwise, if ||∇ g(Ñ 0)|| ≥ 10−3, let

- 228 - Chap. 5

Ô =
1

||∇ g(Õ 0)||
FACTOR,

otherwise do not scale.

Scaling will not always reduce the amount of work required to solve a specific problem.In

fact, it can be detrimental.In the following table, we show the number of iterations required to

solve some problems (described in Appendix B) with and without function scaling.All of these

problems were solved using second order splines on a uniform mesh with a discretization level of

N = 50. For both NPSOL and CFSQP, the problems were solved usingscaling set to 0, 10,

and 20. No numbers are given for CFSQP in the last two rows since it was not able to solve the

Goddard problem.It should be noted that none of these problems is seriously ill-conditioned.

Table O7

NPSOL CFSQP

Problem ialg 0 10 20 0 10 20

LQR 2 5 7 7 5 13 11
Rayleigh w/o endpoint constraint 2 18 17 14 25 24 19
Rayleigh with endpoint constraint 2 24 29 19 19 26 17
Goddard w/o trajectory constraint 4 69 29 45
Goddard with trajectory constraint 4 22 17 19

For the last row, riots was called withvar = 10−4. Constraint scaling did not have any affect on

the number of iterations for these problems.Discussion of scaling issues can be found

in [41,129,130].

Warm Star ts

The inputlambda1 controls the warm-starting feature available with riots if it is linked with

NPSOL. Thereare two types of warm starts.

The first type of warm start is activated by settinglambda1=1. If this warm start is used,

the Lagrange multiplier estimates and Hessian estimate from the previous run will automatically

be used as the starting estimates for the current run.This is useful ifriots terminates because the

maximum number of iterations has been reached and you wish to continue optimizing from where

riots left off. This type of warm start can only be used if the previous call toriots specified

lambda1=-1 or lambda1=1. Settinglambda1=-1 does not cause a warm-start, it just pre-

pares for a warm start by the next call toriots.

- 229 - Chap. 5

The second type of warm start allows warm starting from the previous solution fromriots

but interpolated onto a new mesh and is only implemented for first and second order splines.It is

activated by providing estimates of the Lagrange multipliers in the first column of input

lambda1 and the status of the constraints in the second column oflambda1. Typically,

lambda1 is produced by the program distribute which appropriately interpolates thelambda2

output from the previous run ofriots onto the new mesh. Whenlambda1 is supplied in this

way, riots estimatesH(Ö), the Hessian of the Lagrangian at the current solution point, by apply-

ing finite-differences to the gradients of all objective and constraint functions weighted by their

Lagrange multipliers (and scalings if a scaling option has been specified).

The estimateH(Ö) of the Hessian of the Lagrangian is computed by the program

comp_hess. This computation requiresN + × + nfree x0 system simulations (wherenfree x0 is the

number of free initial conditions) and twice as many gradient computations as there are objective

functions and constraints with non-zero Lagrange multipliers.Also, if a non-zero value forvar

is specified, the second derivative of the penalty term on the piecewise derivative variation of the

control is added to the Hessian estimate.When × ≤ 2, the computation takes advantage of the

symmetry of the Hessian by stopping the simulations and gradient computations once the calcula-

tions start filling the Hessian above its diagonal.After H is computed, it is converted into trans-

formed coordinates using the formulaH
∼

= (M−1/2Ø)T HM−1/2Ø , unless the transformation mecha-

nism has been disabled.

Because NPSOL expects the Cholesky factorization of a positive definite Hessian estimate,

the following additional steps are taken. First,a Cholesky factorization is attempted onH
∼

. If

this fails (becauseH
∼

is not positive definite) the computation continues with the following proce-

dure. Asingular value decomposition is performed to obtain the factorizationH
∼

= USVT , where

S is the diagonal matrix of singular values ofH
∼

. Next, each diagonal element,Ù i , of S is set to

Ù i = max { Ù i , Ú 1/3
mach} . Then, we setH

∼
= USUT , which, becauseH

∼
= H

∼ T , makes all negative

eigenvalues ofH
∼

positive while preserving the eigenstructure ofH
∼

. Finally, the Cholesky factor-

ization ofH
∼

is computed.

Notes

1. SinceNPSOL is not a feasible point algorithm, it is likely that intermediate iterates will vio-

late some nonlinear constraints.If riots is linked with NPSOL and, during a linesearch, NPSOL

tries to evaluate a function which produces a floating point error, it will try backtracking to a

- 230 - Chap. 5

smaller step-length†. Using this mechanism, it is possible to force NPSOL to keep iterates within

a prescribed region by forcing a division by zero‡ when iterates are outside that region. Typi-

cally, this should be done in conjunction with a constraint such that if the constraint violation is

too great, a division by zero will occur. In this way, it is possible to specify the allowable amount

of constraint violation.Some margin for constraint violations should be allowed so that superlin-

ear convergence is not inhibited.

If riots is linked with CFSQP, the iterates will always be feasible with respect to the con-

straints iffeasbl is set to a non-zero value.

2. Becauseof the coordinate transformation, the inner products in the termination tests corre-

spond to inner-products inL2[a, b]. Thusthe tests are independent of the discretization level.

3. Whenlinked with NPSOL,riots will produce a file called npsol.opt in the current working

directory.

4. On return from a call toriots, the variableopt_program will be defined in the Matlab

workspace. Itwill contain the string’NPSOL’ or ’CFSQP’ according to which SQP method is

linked withriots.

Bugs

1. Controlbounds can be violated if using splines of orderÛ > 2 unless the coordinate transfor-

mation is disabled.This is done by defining the pre-compiler symbolTRANSFORM to zero in the

code.

2. riots uses the Matlab MEX functionmexCallMATLAB to make calls tosimulate. There is

a bug in this function that interferes with the operation ofctrl-C. This problem can be circum-

vented by compilingsimulatedirectly intoriots (see instructions on compilingriots).

3. The full warm-start feature, which requires the computation of the Hessian using finite-

differencing of the gradients, is not allowed if the inputfd is set to a non-zero value.

†The backtracking feature of NPSOL requires a patch for the linesearch subroutine in NPSOL (see instructions for compiling).
‡ Adding the statement1.0/0.0; to the user-supplied object code will not be allowed by most compilers and the statements

zero=0.0; 1.0/zero; will probably not cause a floating point error if compiler optimization is turned on (and it could result in a
bus error for the exception handling routine).Instead usezero=0.0; zero = 1.0/zero;.

- 231 - Chap. 5

7. UTILITY ROUTINES

There are several utility programs, some are used by the optimization programs and some are

callable by the user. Those utility programs of interest to the user are described in this section.

These are:

control_error Computes an estimate of the norm of the error of the computed solution.If
Ü

N
* is the computed solution andÜ * is a local minimizer for problemOCP, the

solution error is ||Ü N* − Ü * ||H2
.

distrib ute Redistributes the integration mesh according to one of several mesh refinement

strategies including one which simply doubles the mesh.The control spline

defined on the previous mesh will be interpolated onto the mesh.The order of

the spline is allowed to change.

est_errors Returns an estimate of the global integration error for the fixed step-size

Runge-Kutta methods and uses the variable step-size integration algorithm to

obtain accurate measures of the objective functions, constraint violations and

trajectories. Italso returns the function space norm the free portion of the gra-

dient of the augmented Lagrangian which is needed bycontrol_error.

sp_plot Plots spline functions.

transform Computes a matrix which allows the L2 inner product of two splines to be

computed by taking the inner product of their coefficients.

- 232 - Chap. 5

>A¹?PQ@H�R¹ W NMGJ�¨�R¹?�

Purpose

This function uses values computed byest_errors for solutions ofOCP on different integration

meshes to estimate ||Ý N − Ý * ||H2
for the current solutionÝ N = (uN , Þ N) using results from Chapter

4.4.

Calling Syntax

[error,norm_zd]=control_error(x01,u1,t1,ze1,x02,u2,t2,ze2,{Tf})

Description

This program compares the two solutions Ý N1
= (u1,x01) and Ý N2

= (u2,x02), corresponding

to the mesh sequencest1 andt2 to produce an estimate of ||Ý N2
− Ý * ||H2

where Ý * = (u* , Þ *) is a

solution forOCP. For free final time problems,Tf should be set to the duration scale factor (see

transcription for free final time problems in §2).Only the first columns ofx01 andx02 are used.

The inputsze1 andze2 are the norms of the free gradients of the augmented Lagrangians evalu-

ated atÝ N1
and Ý N2

, respectively, which can be obtained from calls toest_errors.

The outputerror is the estimate of ||Ý N2
− Ý * ||H2

where

||Ý N2
− Ý * ||2H2

=. ||x02 − Þ * ||22 +
a+(b−a)Tf

a
∫ ||u2(t) − u* (t)||22dt ,

with u2(⋅) the spline determined by the coefficientsu2. The outputnorm_zd is ||Ý N2
− Ý N1

||H2

where

||Ý N2
− Ý N1

||2H2
=. ||x02 − x01||22 +

a+(b−a)Tf

a
∫ ||u2(t) − u1(t)||22dt ,

with u1(⋅) and u2(⋅) the splines determined by the coefficientsu1 andu2, respectively.

- 233 - Chap. 5

Example

Let u1 be the coefficients of the spline solution for the mesht1 and letu2 be the coefficients of

the spline solution for the mesht2. Let ß 1 and ß 2 be the Lagrange multipliers (if the problem

has state constraints) and letI1 and I2 be the index set of inactive control bounds returned by one

of the optimization programs (if the problem has control bounds).The Lagrange multipliers and

the inactive control bound index sets are also returned by the optimization routines.Then we can

compute the errors,e1 = ||à N1
− à * ||H2

ande2 = ||à N2
− à * ||H2

as follows:

>> [int_error1,norm_gLa1] = est_errors(x0,u1,t1,1,ialg1,lambda1,I1);

>> [int_error2,norm_gLa2] = est_errors(x0,u2,t1,1,ialg2,lambda2,I2);

>> error1 = control_error(x0,u2,t2,norm_gLa2,x0,u1,t1,norm_gLa1,1);

>> error2 = control_error(x0,u1,t1,norm_gLa1,x0,u2,t2,norm_gLa2,1);

See Also: est_errors.

- 234 - Chap. 5

��BEKM@H�RBEáâlS@CG

Purpose

This function executes various strategies for redistributing and refining the current integration

mesh. Italso interpolates the current control and Lagrange multipliers corresponding to trajectory

constraints onto this new mesh.

Calling Syntax

[new_t,new_u,new_lambda,sum_lte]=distribute(t,u,x,ialg,lambda,
n_free_x0,strategy,
{FAC},{new_K},{norm})

Description of Inputs

t Row vector containing the sequence of breakpoints for the current mesh.

u The coefficients of the spline defined on the current mesh.

x Current state trajectory solution.

ialg Integration algorithm to be used during next simulation or optimization.

lambda Current Lagrange multiplier estimates fromriots. Specify lambda=[] if you

do not need new multipliers for a warm start ofriots.

n_free_x0 Number of free initial conditions.This value only affects the extension of

Lagrange multipliers needed for a warm start ofriots.

strategy Selects the redistribution strategy according to the following table:

strategy Type of Redistribution
1 Movable knots, absolute local truncation error.
2 Fixed knots absolute local truncation error.
3 Double the mesh by halving each interval.
4 Just change spline order tonew_K.
11 Movable knots, relative local truncation error.
12 Fixed knots, relative local truncation error.

For more information on these strategies, see Chapter 4.3.2.The quasi-

uniformity constant in equations (4.3.13) and (4.3.24) is set toã = 50. InStep 2

of Strategy 2 (and 12),ä = 1/4.

FAC For use with strategies 1,2,11 and 12.If specified, the number of intervals in the

new mesh is chosen to achieve an integration accuracy approximately equal to the

current integration accuracy divided byFAC. If FAC=[] or FAC=0, the number

- 235 - Chap. 5

of intervals in the new mesh will be the same as the previous mesh for strategies

1 and 11. For strategies 2 and 12, the relative errors ek will be used without

being pre-weighted byFAC.

new_K Specifies the order of the output spline with coefficients new_u. By default,

new_K is the same as the order of the input spline with coefficientsu.

norm Specifies the norm used to measure the integration error on each interval. If

norm=0, then

ek = ||ltek||2 , k = 1, . . . ,N .

If norm=1, then

ek = ||ltek||∞ , k = 1, . . . ,N .

The quantity ltek is an estimate of the local truncation error produced by thek-th

integration (see description ofsimulate, form 7). Default: 0.

Description of Outputs

new_t Contains the sequence of breakpoints for the new mesh.

new_u Contains the coefficients of the spline of ordernew_K (if specified) interpolated

from u onto the new mesh.

new_lambda Tw o column matrix of Lagrange multiplier estimates and associate constraint sta-

tus indicators. Those multipliers (and indicators) corresponding to control

bounds and trajectory constraints are extended to the new mesh. Thisis for use

with the warm start facility of riots and only works with NPSOL-linkedriots.

sum_lte An (n + 1)-column vector of the accumulated local truncation errors produced by

the integration:

sum_lte(i) =
N

k=1
Σ ei

k , i = 1, . . , n+ 1 ,

whereei
k is as computed above. The (n + 1)-th component represents the accu-

mulation of local truncation errors for the integrand of the first objective function.

Notes

1. Thealgorithm used in strategies 1 and 2 does not take into account the presence, if any, of

trajectory constraints.Strategies 2 and 12 include a mechanism that tends to add mesh points at

times, or near times, where trajectory constraints are active. The inputlambda must be supplied

for this mechanism to be used.

- 236 - Chap. 5

GJKR@CNMGd�R�¨¹?�RK

Purpose

This function performs a high accuracy integration with LSODA to produce estimates of various

quantities. Oneof these quantities is used bycontrol_error to produce an estimate of

||å N − å * ||H2
.

Calling Syntax

[int_error,norm_gLa,J,G,x,Ii] = est_errors([x0,{fixed}],u,t,Tf,
ialg,lambda,{I_i})

Description of Inputs

x0 Initial conditions of thecurrent solution. When one or more initial conditions are

free variables, setx0=x(:,1) wherex is the trajectory solution returned by one

of the optimization programs.

fixed An n-vector that indicates which components ofx0 are free variables. If

fixed(i)=0 thenx0(i) is a free variable. Default: all ones.

u Current control solution.

t Sequence of breakpoints for the current integration mesh on the (nominal) time

interval [a, b].

Tf The duration scale factor. For fixed final time problems, setTf=1.

ialg Integration algorithm used to produce the current solution.

lambda Vector of Lagrange multiplier estimates (one or two columns depending on which

optimization program producedlambda).

I_i Index set of controls and free initial conditions that are not at their bounds

(returned by one of the optimization program).

Description of Outputs

int_error int_error(i), i = 1, . . . ,n + 1, is an estimate of the global integration error,

|xi
N,N+1 − xi (b)|, of the current solution computed by summing the local

- 237 - Chap. 5

truncation errors produced by the integration method specified byialg. The

local truncation errors are obtained by a call tosimulate (form 7). If the discrete

solver or the variable stepsize integration routine is being used,int_error is

set to a vectors of zeros.If this is the only output requested, the rest of the calcu-

lations are skipped.

norm_gLa This is an estimate of theH2 norm of the free gradient of the augmented

LagrangianLc,æ evaluated at the current solutionç = (u, è). TheH2 norm of the

free gradient of the augmented Lagrangian is the norm restricted to the subspace

of controls and initial conditions that are not constrained by their bounds.Let

grad_Lu be the gradient of the augmented Lagrangian with respect to controls,

grad_Lx0 be the gradient of the augmented Lagrangian with respect to initial

conditions andM é be the spline transformation matrix computed bytransform.

If Ii is the index set estimating the free portion of

ç = [u(:);xi(free_x0)] (see below), then the free norm if computed as

follows:

||∇ freeLc,æ (ç)||H2
= gLM(Ii)’*gL(Ii) ,

where

gLM = [grad_Lu(:)M−1é ; grad_Lx0(free_x0)]

and

gL = [grad_Lu(:) ; grad_Lx0(free_x0)] .

In forming the augmented Lagrangian,ê = lambda(:,1) and ci = | ê i |. The

quantity ||∇ freeLc,æ (ç)||H2
is used by control_error to estimate the error

||ç N − ç * ||H2
.

J An estimate of the objective function at the current solution.This estimate is produced

using LSODA.

G An estimate of the sum of constraint violations.This estimate is produced using LSODA.

x The solution trajectory as produced using LSODA.

Ii Set of indices that specify those time points in the mesht that are contained in the estimate

I of subintervals in [a, b] on which the control solution is not constrained by a control

bound followed by the indices of any free initial conditions that are not constrained by a

bound. Thisindex set is used bycontrol_error. For the purpose of demonstration,

- 238 - Chap. 5

consider a single input systems (m = 1) with no free initial conditions.Let

Î =.
k ∈∈ I_i

∪ [tk−1, tk+1] ,

wheret0 =. t1 and tN+2 =. tN+1. Î is an estimate of the time intervals on which the control

bounds are inactive. From Î , the index setIi is set to

Ii =. { k | tk ∈∈ Î } .

When there are multiple inputs, this procedure is repeated for each input.When there are

free initial conditions, the indices of the unconstrained components ofx0(free_x0) are

added to the end ofIi.

Notes

1. If the user does not supply the derivative functionsDh andDl then it will be necessary to

change the statementIALG=5 to IALG=6 in the file est_errors.m.

See Also: control_error.

- 239 - Chap. 5

KM¿QNM¿ W ¹?@

Purpose

This program allows the user to easily plot controls which are represented as splines.

Calling Syntax

val = sp_plot(t,u,{tau})

Description

Produces a plot of the spline with coefficientsu defined on the knot sequence constructed from

the integration mesht. The order, ë , of the spline is presumed equal tolength(u) − N + 1. If

tau is specified, u is not plotted, just evaluated at the timestau. Otherwise,u is plotted at 100

points with the same relative spacing as the breakpoints int. Second order splines can also be

plotted using the Matlab commandplot instead ofsp_plot.

If the inputtau is not given, then the output isval=[t;uval] wheret are the data

points anduval are the data values;uval has the same number of rows as the inputu. If the

inputtau is given, then the output is justval=uval.

Example . This example plots a first, second and third order spline approximation to one

period of a sinusoid using ten data points.The splines are produced using the commands in the

Matlab Spline Toolbox.
>> t=[0:2*pi/10:2*pi];
>> sp1 = spapi(t,t(1:10),sin(t(1:10)));
>> [dummy,u1] = spbrk(sp1);
>> knots2 = augknt(t,2); knots3 = augknt(t,3);
>> sp2 = spapi(knots2,t,sin(t));
>> [dummy,u2] = spbrk(sp2);
>> tau = aveknt(knots3,3);
>> sp3 = spapi(knots3,tau,sin(tau));
>> [dummy,u3] = spbrk(sp3);
>> sp_plot(t,u1); sp_plot(t,u2); sp_plot(t,u3);

0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
First order spline

0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Second order spline

0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Third order spline

- 240 - Chap. 5

@C�¨=?PQKRef¹F�¨b

Purpose

This function produces the transformation matrixM ì . It is called byriots andpdmin to generate

the spline coordinate transformation for the controls.

Calling Syntax

Malpha = transform(t,order)

Description

Given two splinesu1 andu2 of orderí = order with coefficient î 1 and î 2 defined on the knot

sequence with breakpoints given by t, /
\ u1, u2

\
/ L2

= trace(î 1M ì î T
1). This function works with

non-uniform meshes and with repeated interior knot points.

The output,Malpha is given in sparse matrix format.The transform matrix forí = 1, 2, 3,

or 4 has been pre-computed for uniformly spaced mesh points.Also, if the inputs to the preced-

ing call to transform, if there was a preceding call, were the same as the values of the current

inputs, then the previously computed transform matrix is returned.

Example

This example generates two second order splines and computes theirL2 inner-product by inte-

grating their product with the trapezoidal rule on a very fine mesh and by usingM ì .
>> t = [0:.1:1];
>> knots = augknt(t,2);
>> coef1 = rand(1,11); coef2 = rand(1,11);
>> sp1 = spmak(knots,coef1);
>> sp2 = spmak(knots,coef2);
>> tau = [0:.0001:1];
>> u1 = fnval(sp1,tau);
>> u2 = fnval(sp2,tau);
>> inner_prod1 = trapz(tau,u1.*u2)

inner_prod1 = 0.2800

>> Malpha = transform(t,2);
>> inner_prod2 = coef1*Malpha*coef2’

inner_prod2 = 0.2800

>> inner_prod1-inner_prod2

ans = 1.9307e-09

- 241 - Chap. 5

8. INSTALLING, COMPILING AND LINKING RIO TS

This section describes how the components of RIOTS are compiled and linked together. Some of

the specific details pertain to operation on a Sun SparcStation running SunOS 4.1 and may have

to be modified for other systems.Some of the compiling and linking procedures discussed below

use the shell scriptcmex that comes with Matlab. Please refer to the MatlabExternal Interface

Guideand ‘$MATLAB/bin/README.mex’ for details aboutcmex.

The following files are supplied with RIOTS:

Integration Routines MEX programs and utilities M-files

adams.c .mexrc.sh a_lagrng_fnc.m
discrete.c cmex.link armijo.m
euler.c exist_in_workspace.c aug_lagrng.m
lsoda_dummy.c LBFGS.c check_deriv.m
RK3.c m_sys_link.c check_grad.m
RK4.c NEW_linesearch.f comp_hess.m
trapezoid.c riots.c conj_grad.m

simulate.c control_error.m
system.h distribute.m
utility.c est_errors.m
utility.h eval_fnc.m

extend.m
fill_indices.m
gestimate.m
multiplier_update.m
outer.m
pdmin.m
ppual.m
project.m
sort_lambda.m
sp_plot.m
transform.m

There are also a few other miscellaneous files: Contents.m, cmex.link, RIOTS.m,

RIOTS_demo.m, RIOTSdem1.m, RIOTSdem2.m, RIOTSdem3.m, RIOTSdem4.m, RIOTS-

dem5.m and RIOTSdem6.m. Additionally, there are examples of user code for several optimal

control problems and a C-code template file in the subdirectory ‘RIOTS/systems’. Thereis also

an executable shell script, ‘RIOTS/RIOTS_install.SunOS4’ that performs most of the steps

required to compile RIOTS. Readthe comments at the top of that file for instructions.Also see

the file ‘RIOTS/README’.

- 242 - Chap. 5

SOME RULES FOR COMPILING.

There are several different programs that must be compiled before using RIOTS. Mostof these

programs are written in C, but some are written in Fortran. Thereare a few points that must be

observed in order to ensure that all of the programs are compiled in a consistent manner.

• Use the compiler option ‘-cg87’ because, on Sun platforms, Matlab comes linked with the old-

style math library.

• Make sure that the alignment of double words is the same for all programs.That is, either all

programs should be compiled with double words aligned on 8 byte boundaries, or none

should. For the Sun supplied compilers, double alignment on 8 byte boundaries can be speci-

fied with the option ‘-dalign’.If the option ‘-fast’ is specified, double alignment on 8 byte

boundaries is automatically turned on.

• Make sure when compiling any Fortran code that the meaning of the Fortran real corresponds

to the C double (8 bytes), and similarly for integers (4 bytes).This is the default behavior for

the Sun Fortran compiler.

• Some problems were noticed when riots.c was compiled with optimization level -O2 andriots

was used with the variable step-size integration algorithm. Optimization level -O3 did not

produce any problems.

UNPACKING RIOTS.

The RIOTS package is distributed in a compressed UNIX tar file called RIOTS.tar.gz. Thefol-

lowing procedure uncompresses this file and extracts RIOTS.

Step 1. Create a directory for RIOTS called ‘RIOTS’ by typing the following command at

the UNIX prompt ‘%’,

% mkdir RIOTS

Step 2. Uncompress RIOTS.tar.gz using the freely available GNU program gunzip†.

% gunzip RIOTS.tar.gz

Step 3. Extract the RIOTS files.

% tar xvf RIOTS.tar

After RIOTS has been extracted, the main programs will be located in the directory ‘RIOTS’ and

the integration routines will be in the subdirectory ‘RIOTS/drivers’. Theuser should also create a

subdirectory, such as ‘RIOTS/systems’, for storing system functions and any system data saved

from Matlab. Matlab should be started from this systems directory. Access to the functions in

† You can obtain gunzip via anonymous ftp to prep.ai.mit.edu.It is located in the file /pub/gnu/gzip-1.2.4.tar.

- 243 - Chap. 5

RIOTS can then be enabled by typing at the Matlab prompt

>> path(path,’..’)

Note that it is not necessary for the ‘systems’ directory to be a sub-directory of the ‘RIOTS’

directory. If i t is not, thepathcommand should specify the full pathname for the ‘RIOTS’ direc-

tory.

Important: Included with RIOTS is a file called ‘.mexrc.sh’ which must exist in the directory

‘RIOTS’ in order forcmex to work properly with the SunOS 4.1 operating system.This file

should also be copied into the user’s ‘systems’ or home directory. For other systems, ‘.mexrc.sh’

should either be deleted or modified according to the instructions in ‘$MAT-

LAB/bin/README.mex’. The shell variable ‘MATLAB’ should be set to the Matlab root direc-

tory. For example,

% setenv MATLAB /usr/local/matlab

If you are running a Bourne shell, you will need to use the export command in place of setenv.

Compiling sim ulate .

Before compiling and linking the programs the constitutesimulate, the user must construct the

library ‘drivers.a’ which contains the numerical integration routines.Most of the integration rou-

tines come supplied with RIOTS. Theexceptions are the variable step-size integration routine

LSODA and the linear algebra package, LINPACK, to which LSODA makes calls. If LINPACK

is not already present on your machine†, instructions for obtaining it can be received by sending

email to ‘netlib@ornl.gov’ with no subject and the following message:

send index from linpack

You must compile LINPACK in double precision and convert it into a library called ‘liblin-

packd.a’ using the UNIX commands ‘ar’ and ‘ranlib’.You can also obtain LSODA by sending

email to ‘netlib@ornl.gov’ with the following message:

send lsoda.f from odepack

LSODA consists of fourteen files.Once the LSODA programs are received, they should be com-

piled and collected into a library called ‘lsoda.a’.This can be accomplished with the following

commands typed at the UNIX prompt:

% f77 -c -fast -O3 -cg87 *.f

% ar rcv lsoda.a *.o

% ranlib lsoda.a

† One place to look for LINPACK is in /usr/local/lib/liblinpackd.a.

- 244 - Chap. 5

% rm *.o

The resulting file ‘lsoda.a’ should be placed in the subdirectory ‘RIOTS/drivers’.

Alternatively, you can use the dummy program lsoda_dummy.c, supplied with RIOTS, to

avoid having to obtain and compile LSODA and LINPACK (see below). However, you will not

be able to use the variable step-size option ofsimulate. Also, est_errors, which requires

LSODA, cannot be used.

Compiling the integration routines. There are six integration programs included with RIOTS.

They are: discrete.c, euler.c, trapezoid.c, RK3.c, RK4.c and adams.c.

These programs must be compiled and collected into a library called drivers.a as follows:

Step 1: Compile each integration routine.For example, to compile euler.c, use the following

command at the UNIX prompt,

% cc -c -fast -O3 -cg87 -I.. -I$MATLAB/extern/include euler.c

where $MATLAB is the root directory for Matlab.

Step 2: Create the drivers.a library with the following UNIX commands,

% ar rcv drivers.a *.o

% ranlib drivers.a

If you do not have LSODA and LINPACK, you must also compile the program

lsoda_dummy.c, after creating drivers.a, in the same way the other integration pro-

grams were compiled inStep 1. Then type

>> mv lsoda_dummy.o lsoda.a

The following command, typed at the UNIX prompt will compile program simulate.c in the

‘RIOTS’ directory.

% cc -c -I$MATLAB/extern/include -DMATLAB_MEX_FILE -fast simulate.c

Additionally, the program utility.c must be compiled:

% cc -c -I$MATLAB/extern/include -fast -O3 utility.c

Compiling the User -Supplied System Code

To link simulate, the user must supply object code that defines the optimal control problem.In

the example above that object code was called ‘my_system.o’.The following UNIX command

will create ‘my_system.o’ from a file called ‘my_system.c’.

% cc -c -fast -O3 my_system.c

- 245 - Chap. 5

It is a good idea to use a high level of optimization when compiling the user code since the user

functions will be called many times during the course of each simulation.If the user-supplied

system code will be supplied as M-files, you must compile the file ‘m_sys_link.c’ instead.This

will create the object code file ‘m_sys_link.o’ which should then be linked withsimulate. This

object code makes the appropriate Matlab call-backs to the system m-files.

Linking in the User’ s Optimal Contr ol Pr oblem. The next step is to create the

executable MEX programsimulate by linking in the user-supplied system code.This executable

should be created in the user’s ‘systems’ directory. This step must be repeated each time a new

optimal control problem is to be solved. In this example, the system code is called

‘my_system.o’. Firstdefine the environment variable RIOTS_DIR with the name of the

‘RIOTS’ directory and then link.

% setenv RIOTS_DIR full_path_name_of_RIOTS

% cmex.link my_system.o

You needn’t set theRIOTS_DIR variable if you are going to perform the linking in the ‘RIOTS’

directory.

Compiling riots.

Before compilingriots, one of the Sequential Quadratic Programming (SQP) codes NPSOL (ver-

sion 4.0) or CFSQP (version 2.1) must be procured†. The efficacy of riots depends directly on

the underlying optimization program;riots is much more effective with NPSOL than with

CFSQP. Once obtained, the SQP program should be compiled according to the instructions

included with its user’s manuals. IfCFSQP is being used, the result should be two object files,

‘cfsqp.o’ and ‘qld.o’. For NPSOL, the result will be a library called ‘optlib.a’. In keeping with

standard UNIX conventions, the name of this file should be changed to ‘libopt.a’ using the UNIX

command ‘mv’.

When using NPSOL, the following changes should be made to the Fortran program ‘npsol-

subs.f ’before compiling NPSOL:

1. Changethe line

if (ncdiff .eq. 0) then

to

if (ncdiff .lt. 0) then

† CFSQP can be obtained for free by sending a request to Prof. Andre´ Tits (andre@eng.umd.edu).NPSOL can be purchased
from Stanford Business Software, Inc., 2680 Bayshore Parkway, Suite 304, Mountain View, CA 94043, (415) 962-8719.

- 246 - Chap. 5

and change the line

if (nfdiff .lt. 0) then

to

if (nfdiff .eq. 0) then

2. Addthe line

open(ioptns, file = ’npsol.opt’, status = ’OLD’)

before the line

call opfile(ioptns, nout, inform, npkey)

3. Replacethe subroutinenpsrch with the code in the file ‘NEW_linesearch.f’.

Next, riots can be compiled and linked using one of the following commands.

For NPSOL, use:

% cmex -O3 CASE=f -DNPSOL -L$NPSOL riots.c LIBS=’-lopt $LIBS’

where $NPSOL is the directory where ‘libopt.a’ is located.

For CFSQP, use:

% cmex -O3 -I$CFSQP riots.c LIBS=’$CFSQP/cfsqp.o $CFSQP/qld.o $LIBS’

where $CFSQP is the CFSQP directory.

Dir ect linking. With riots compiled and linked with the proceeding commands, it will make

calls tosimulate using the Matlab proceduremexCallMATLAB . There are two drawbacks to

this. First,calling simulate via this Matlab procedure is somewhat slow. Secondly, there is a bug

in mexCallMATLAB that preventsctrl-C from causing an interrupt.To avoid these problems,

riots can be compiled withsimulate linked in directly. The following steps are required for

direct linking:

Step 1. Make a direct version of ‘simulate.o’ using

% cc -c -I$MATLABextern/include -fast -DDIRECT \

-o simulate_direct.o simulate.c

Step 2. Compile and linkriots.

% setenv RIOTS_DIR full_path_name_of_RIOTS

For NPSOL use:

% cmex CASE=f -O3 -DDIRECT -DNPSOL -DSTATIC $RIOTS_DIR/riots.c \

LIBS="my_system.o $RIOTS_DIR/simulate_direct.o $RIOTS_DIR/utility.o \

$RIOTS_DIR/drivers/drivers.a $RIOTS_DIR/drivers/lsoda.a \

/usr/tools/lib/liblinpackd.a $NPSOL/libopt.a"’$LIBS’

- 247 - Chap. 5

For CFSQP use:

% cmex CASE=f -DDIRECT -O3 -I$CFSQP $RIOTS_DIR/riots.c \

LIBS="$RIOTS_DIR/simulate_direct.o $ my_system.o CFSQP/cfsqp.o \

$CFSQP/qld.o $RIOTS_DIR/utility.o $RIOTS_DIR/drivers/drivers.a \

drivers/lsoda.a /usr/tools/lib/liblinpackd.a"’$LIBS’

Step 3. Remove the file ‘simulate_direct.o’.

% rm simulate_direct.o

The disadvantage to linkingsimulate directly into riots is that the size of the executableriots

will be much larger. Also, in order for calls tosimulate that are made outside ofriots to work

properly, simulate must still be compiled and linked with the user’s system code according to the

instruction above for compilingsimulate. Even if simulate is not also called directly by the user,

there are many other programs in RIOTS that make calls tosimulate. These programs will not

work if simulate is not compiled and linked separately fromriots.

Compiling the Other MEX Pr ograms.

There two other MEX programs which must be compiled by typing at the UNIX prompt:

% cmex -O3 LBFGS.c

% cmex exist_in_workspace

- 248 - Chap. 5

Chapter 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The work in this thesis presents a theoretical foundation for the solution of optimal control

problems using Runge-Kutta integration methods.This theoretical foundation underpins the

implementation of our software toolbox, RIOTS, which has been used to solve sev eral challeng-

ing optimal control problems.However, the current version of RIOTS has shortcomings in some

important areas.What follows is a discussion of areas in which RIOTS could be improved and

suggestions for how to do so.

Automatic Differentiation of user-supplied functions. To solve an optimal control problems

using RIOTS, the user must supply code for each of the functions and their derivatives used to

that describe that problem.A common source of errors is the computation of function derivatives

which can be quite complicated for nonlinear systems.Currently, RIOTS has two programs to

check derivative calculations and to help locate any errors in these calculations.But, it would be

much more useful to have derivative functions provided automatically using automatic

differentiation [131,132].Not only would this prevent errors in the derivative calculations, but it

would spare the user the job of programming the derivatives.

Extension to Large-Scale Problems. The size of the mathematical programming problem cre-

ated by discretizing an optimal control problem depends primarily on the discretization level N.

The conjugate gradient and L-BFGS implementations of the projected descent algorithm pre-

sented in Chapter 3 are well-suited for handling very high discretization levels. Thesemethods

are used in the programpdmin. Howev er, pdmin can only handle state constraints indirectly

through penalty terms.The main program in,riots, is based on sequential quadratic program-

ming and can handle state equality and inequality constraints.However, riots is not well-suited

for high discretization levels because at each iteration the SQP algorithm computes a Hessian

update using the BFGS formula and solves a dense quadratic program (QP) at each iteration to

- 249 - Chap. 6

obtain a search direction.We list here several possible ways to overcome this problem:

• Instead of computing the Hessian estimate using the BFGS method, a Hessian estimate

can be provided using the limited memory L-BFGS[86,94] method.Still, some means for

efficiently solving the QP based on this estimate would be needed.

• The QP can be solved efficiently by taking into account the structure of the problem

that gives rise to the QP. Specifically, the QP that is solved at each iteration is actually a lin-

ear/quadratic (LQ) optimal control problem.This structure can be used to develop solution

methods for the QP that are much more efficient than standard QP algorithms.One

approach is based on the method in[93] for recursively computing the Newton’s direction

for unconstrained problems in orderN time and the differential dynamic programming

method in[133-137]. Theextension of this method to problems with control constraints is

presented in[138,139]. Finally, an algorithm for the recursive computation of Newton’s

direction for problems with state constraints is developed in[140]. Themain drawback to

all of these methods is that they hav eonly been developed for Euler’s method with piece-

wise constant controls.It is likely that these methods can be extended to any fixed step-size

Runge-Kutta method and to piecewise polynomial representation for the control.It is prob-

ably much more difficult to extend these methods to spline representations of the control

(except linear splines which can be treated as piecewise linear functions with linear equality

constraints at the breakpoints).But the main advantage of splines over piecewise polynomi-

als is the smaller number of parameters.This advantage is not so important if the work to

solve the QP is only orderN.

Another approach is to consider the two point boundary value problem (BVP) that

arises necessary conditions for optimality of a solution to the LQ problem.This BVP is lin-

ear with constraints.Numerical methods based on multiple shooting for solving such

BVP’s are quite advanced. Thesolution of this BVP is the required search direction.

Examples of this approach can be found in[5,6,24,114].

• Another major area of research involves discretizing the optimal control using colloca-

tion (fixed step-size, implicit Runge-Kutta) methods.In this procedure, finite-dimensional

approximations of both the controls and states are parameterized and their parameters are

used as the decision variables in the resulting mathematical programming problem.In this

method, the differential equations describing the system dynamics are accounted for by

requiring them to be satisfied at collocation points.There are two major disadvantages to

this approach:(i) the number of decision variables in the mathematical program is dramati-

cally increased and(ii) the collocation conditions introduce a huge system of nonlinear

- 250 - Chap. 6

equality constraints into the problem.

There are, however, two major advantages that come with this approach.First,

because the decision variables include the system states, simple bounds on the state trajecto-

ries or endpoints become simple bounds on the decision variables. Thesebounds can be

handled very efficiently without having to compute gradients and, furthermore, feasibility

with respect to these bounds can be easily maintained even with infeasible point optimiza-

tion methods.Second, the Hessian of the Lagrangian is block diagonal because the second

derivatives of the objective and constraint functions with respect to the control and state

parameters are all block diagonal.Additionally, the Jacobian of the constraints is a banded

matrix. Thus,the QP is sparse and can be solved using sparse linear algebra.A complete

software package for discretizing optimal control problems using collocation and solving

the discretized problems using a sparse SQP method is described in[38,105]. Oneobstacle

with this approach that has not been fully resolved is how to obtain a sparse Hessian esti-

mate. Themethod in [38] obtains the Hessian using sparse finite-differences. Thisis rea-

sonably efficient. Alternatively, but less attractively, the user can be required to supply sec-

ond derivatives so that the Hessian can be computed exactly. But for both of these choices,

the fact that the Hessian is not, in general, positive definite causes serious difficulties in the

solution of the QP. A new SQP algorithm which used the true Hessian without requiring

any modification to the QP has been developed [141]. Another possibility is to use trust

region methods.One avenue that has not yet been explored is to use the LANCELOT

package [142]which is a trust region method for minimizing an augmented Lagrangian.

Finally, another approach which we began to work on with some initial success is to attempt

to produce a block diagonal, positive definite estimate of the Hessian using a modified

BFGS update.Generally, the work on sparse Hessian updates has been disappointing.But

the block diagonal structure of the Hessian is a specific case whose updates can, we believe,

be obtain using the partitioned quasi-Newton update method[143,144] modified to handle

the possibility of non-positive-definite updates for individual blocks. This modification can

be either to skip such updates altogether or to use the Powell modification[145]. If the Hes-

sian is positive definite, or even positive semi-definite, the QP can be solved by a sparse QP

algorithm such as BQPD which is based on the algorithm in[146] and is available from that

author. For surveys on the solution of large-scale optimization algorithms, the reader is

referred to the following articles[147-149]. Finally, to obtain sparse Hessian and Jacobian

matrices, the controls (and state trajectories) need to be represented as piecewise discontinu-

ous functions (e.g. piecewise polynomial) rather than splines.This has the side-benefit of

producing a transform matrix,M N , that is block diagonal and trivial to compute.

- 251 - Chap. 6

Tr ajectory constraints. Our current method of computing functions gradients with respect to

the control is based on adjoint equations.There is one adjoint equation for each function.This is

quite inefficient when there are trajectory constraints because for each trajectory constraint there

is, in effect, one constraint function per mesh point.Thus, for an integration mesh withN + 1

breakpoints, roughlyN adjoint equations have to be solved to compute the gradients at each point

of a trajectory constraint.

There are two approaches for greatly increasing the gradient computations for trajectory

constraints. Thesetwo approaches can be used in conjunction with each other. First, it is really

only necessary to compute gradients at points,tk, where the trajectory constraints are active or

near-active. The other mesh points should be ignored.Algorithms for selecting the active or

almost active constraint are present in[99,150] along with convergence proofs.The second

approach uses the state-transition (sensitivity) matrix, rather than adjoint variables, to compute

gradients. Thestate-transition matrix is the solution of a matrix differential (or difference) equa-

tion. Thesolution of this equation requires the same amount of computation as solvingn adjoint

equations, wheren is the number of state variables. Butthis equation is solved only once for a

given control, u, reg ardless of how many gradients are required.Thus, if there are more thann

gradients that need to be computed† it is more efficient to use the state-transition matrix rather

than adjoint variables.

Stabilization of Iterates. One of the main limitations of the current implementation of RIOTS

is that it is not well-equipped to deal with problems whose dynamics are highly unstable.For

such problems, the iterates produced by the optimization routines in RIOTS can easily move into

regions where the system dynamics ‘‘blow-up’’ i f the initial control guess is not close to a solu-

tion. For instance, a very difficult optimal control problem is the Apollo re-entry problem[4].

This problem involves finding the optimum re-entry trajectory for the Apollo space capsule as it

enters the Earth’s atmosphere. Becauseof the physics of this problem, slight deviations of the

capsules trajectory can cause the capsule to skip off the Earth’s atmosphere or to burn up in the

atmosphere. Eitherway, once an iterate is a control that drives the system into such a region of

the state-space, there is no way for the optimization routine to recover. Moreover, in this situa-

tion, there is no way to avoid these regions of the state-space using control constraints.

This problem could be avoided using constraints on the system trajectories.However, this

is a very expensive approach for our method (not for collocation-based methods), especially at

† Here we are not taking into account the fact that the the adjoint equation for a trajectory constraint at timetk only has to be
solved from timetk (instead oftN) to time t0.

- 252 - Chap. 6

high discretization levels. Also, for optimization methods that are not feasible point algorithms,

this approach still might not work. An intermediate solution is possible because it is really only

necessary to check the trajectory constraints at a few points, called nodes, in the integration mesh.

This can be accomplished as follows. Lettk be one such node.Then define the decision variable

x∼ k,0 which will be taken as the initial condition for integrating the differential equations starting

at timetk. This x∼ k,0 is allowed to be different than the valuexk of the state integrated up to time

tk. Howev er, to ensure that these values do, in fact, coincide at a solution, a constraint of the form

gk(u) =. x∼ k,0− xk = 0 must be added at each node.Note that, for nonlinear systems,gk(u) is a

nonlinear constraint.The addition of these node variables allows bounds on that states to be

applied at each node point.This procedure is closely related to the multiple shooting method for

solving boundary value problems and is an intermediate approach between using a pure control

variable parameterization and a control/state parameterization (as in collocation methods).

See [151]for a discussion of node placement for multiple shooting methods.

Diagonalization Strategies. In order to create a truly efficient algorithm for providing solu-

tions of a specified accuracy to optimal control problems, the discretization strategy, an ‘‘outer

loop’’, must be developed for increasing the discretization level in a systematic way. Such a strat-

egy must be able to predict the integration and control solution errors, the amount of work

required per iteration of an optimization algorithm in solving the discretized problem and the

number of iterations required to obtain a solution of the discretized problem to a given accuracy.

Using this information, the outer loop must specify at each outer iteration the discretization level,

the order of the integration method, the order of the control representation, and the number of

inner iterations to perform so that the overall amount of work required to solve the optimal con-

trol problem is minimized.Such a diagonalization strategy was developed in[57] for solving

semi-infinite optimization problems.There are three major obstacles obstructing the use of that

algorithm for optimal control problems.First, the diagonalization scheme proposed in[57] is

based on linearly convergent optimization algorithms.However, we would like to use super-

linearly convergent algorithms such as SQP methods for the inner loop.Second, the errors esti-

mates needed by the diagonalization strategy, such the control solution error, are much harder to

predict for optimal control problems.Currently, only first order bounds on the difference between

the solution of the discretized problems and the true solution are known for general optimal con-

trol problems.This may be too conservative, especially when mesh redistribution schemes are to

be used.Finally, an underlying assumption for the effective use of a diagonalization strategy is

that using the solution from one outer iteration as the starting point for the next outer iteration, so-

called ‘‘warm starts’’, will result in a significant reduction in the number of inner iterations

needed. Thismay not always be true. For example, the programriots is based on an SQP

- 253 - Chap. 6

algorithm that generates Hessian information using a BFGS update.Super-linear convergence

can only begin once enough Hessian information is gathered so that the search directions are

close to Newton’s direction. Sincerestarting the SQP algorithm at a different discretization level

causes the Hessian information to be lost, many iterations will be used just to obtain the requisite

Hessian information, even when the starting point is close to the solution.Currently, our imple-

mentation ofriots has the option of computing an initial Hessian approximation by finite-

differences before starting the inner iterations.However, since the Hessian is dense, this takes a

great deal of computational effort†. Another possibility is to somehow lift the Hessian informa-

tion obtained from the previous outer iteration into the new, higher-dimensional space.We hav e

tried several approaches for doing this and have not met with any success.

Mesh Refinement. The mesh refinement strategies presented in Chapter 4 are not suited for all

situations. Inparticular, they contain no mechanism for directly placing mesh points at or near

locations where control and/or trajectory constraints switch from active to inactive or vice versa.

But, these are the locations where the solutions are likely to be least accurate.One simple, static

adjustment strategy for placing mesh points near constraint switches is to simply place extra mesh

points wherever such constraint activity transitions occur. Extra mesh points can also be placed

throughout regions where the trajectory constraints are active. A version of this approach has

been added to Strategy 2 (and 12) of the utility programdistrib ute in the RIOTS package.How-

ev er, changing the mesh also causes the solution to change.Thus, placing a mesh point where a

constraint becomes active for one grid is probably not the correct point for a new grid. Also,

accurate placement of mesh points may not be sufficient if the control solution loses smoothness

at a constraint transition.For instance, if splines are used for the control representation, then it is

impossible to achieve better than first order accuracy in the overall solution unless repeated knots

are used at the point of discontinuity in the solution.A dynamic adjustment approach for locating

mesh points near discontinuities is through the use of super-nodes [34]in the discretization.

These super-nodes are, essentially, movable locations of extra spline knots that are positioned dur-

ing the optimization to allow discontinuities in the spline or its derivatives.

It must also be remembered that the location of control discontinuities depends not only on

the errors due to the control representation, but also the integration error. To circumvent this

complication, it might be beneficial to employ a the two-phase approach[4,24,41] in which a

† In the discussion of extensions to large-scale problems, we discussed to alternatives for solving the QP to obtain a search di-
rection. Thefirst involves a recursive procedure for finding Newton’s direction. Thesecond involves using collocation as discretiza-
tion because it produces a sparse Hessian.In both cases, the required second derivative information comes in small block matrices.
Thus, for these approaches, finite-differencing, either on the first iteration or all iterations, is a feasible approach.

- 254 - Chap. 6

rough solution is first obtained using a direct optimization method.In these references, the rough

solution provides structural information and a good initial guess for a more accurate solution

obtained by solving the two point boundary value problem arising from the necessary conditions

for optimality. Alternatively, super-nodes could be used in conjunction with a variable step-size

integration method to refine the solution in a second phase direct approach similar to the first

phase. Theuse of the variable step-size integration routine would remove the effect that moving

the super-nodes has on the integration accuracy. Thus, the location the optimization algorithm

chooses for the super-nodes in order to minimizes the objective function will coincide with the

discontinuities in the true solution.The number of super-nodes needed can be ascertained by

inspection of the rough solution obtained in the first phase.

Also, trajectory constraints are currently evaluated at discrete mesh points.In the phase II

operation, trajectory constraint satisfaction can be more accurately guaranteed by constructing

interpolating Hermite polynomials for the state in question over each mesh interval and requiring

these polynomials to satisfy these constraints.Such a procedure is adopted in[104] and[24].

Other Issues and Extensions. Some other useful features for RIOTS would include:

• A graphical user interface. Thiswould allow much easier access to the optimization pro-

grams and selection of options.Also, important information about the progress of the optimiza-

tion such as error messages and warnings, condition estimates, step-sizes, constraint violations

and optimality conditions could be displayed in a much more accessible manner.

• Dynamic linking. Currently, the user of RIOTS must re-linksimulate for each new optimal

control problem.It would be very convenient to be able to dynamically link in the object code for

the optimal control problem directly from Matlab (without having to re-linksimulate). Thereare

dynamic linkers available but they do not work with Matlab’s MEX facility.

• For problems with dynamics that are difficult to integrate, the main source of error in the

solution to the approximating problems is due to the integration error. In this case, it would be

useful to use an integration mesh that is finer than the control mesh.Thus, several integration

steps would be taken between control breakpoints.By doing this, the error from the integration is

reduced without increasing the size (the number of decision variables) of the approximating prob-

lem.

• The variable transformation needed to allow the use of a standard inner product on the coef-

ficient space for the approximating problems adds extra computation to each function and gradi-

ent evaluation. Also,if the transformation is not diagonal, simple bound constraints on the con-

trols are converted into general linear constraints.Both of these deficits can be removed for opti-

mization methods that use Hessian information to obtain search directions.If the Hessian is

- 255 - Chap. 6

computed analytically, then the transformation is not needed at all.If the Hessian is estimated

using a quasi-Newton update, it may be sufficient to use the transformation matrixM N or M ï as

the initial Hessian estimate (rather than the identity matrix) and dispense with the variable trans-

formation. We hav enot performed this experiment; it may not work because the the updates will

be constructed from gradients computed in non-transformed coordinates†.

• It may be useful to allow the user to specify bounds on the control derivatives. Thiswould

be a simple matter for piecewise linear control representations.Also, currently the only way to

specify general constraints on the controls is using mixed state-control trajectory constraints.

This is quite inefficient since adjoint variables are computed but not needed for pure control con-

straints.

• Currently there is no mechanism in RIOTS for handling systems with time-delays or, more

generally, integro-differential equations[153]. Thiswould be a non-trivial extension.

• Add support for other nonlinear programming routines inriots.

• There have been very few attempts to make quantitative comparisons between different

algorithms for solving optimal control problems.The few reports comparing

algorithms [154,155],involve a small number of example problems, are inconclusive and are out

of date. Therefore, it would be of great use to have an extensive comparison of some of the cur-

rent implementations of algorithms for solving optimal control problems.

† With appropriate choice ofH0, quasi-Newton methods are invariant with respect to objective function scalings[95,152], but
not coordinate transformations (which is variable scaling).

- 256 - Chap. 6

APPENDIX A

In this Appendix we collect a few results used in the analysis of Sections 4 and 5.We will

continue to use the notation of Section 4:∆ = 1/N, tk = k∆, and ð k,i = t k + ci∆.

Lemma A.1. For representationR1, suppose that Assumptions 3.1(a), 4.1’ and 4.3 hold.For

representationR2, suppose that Assumptions 3.1(a), 4.1’, and 4.6 hold.For any bounded subset

S⊂ B, there exists a ñ < ∞ such that for any ò = (ó , u) ∈∈ S ∩ HN , ||ô k|| ≤ ñ ∆2 for all k ∈∈ õ ,

where

(A.1)ô k =. xö (tk) − xö (tk+1) + ∆
s

i=1
Σ bi h(xö (tk), u[ð k,i]) , k ∈∈ õ ,

with xö (⋅) the solution of the differential equation (2.3.1) andu[ð k,i] defined by (2.4.6e) for repre-

sentationR1 or (2.4.11c) for representationR2.

Proof: Let b
∼

j and d j be as defined in (2.4.10) and, forj ∈∈ r , let i j ∈∈ I where I is given by

(2.4.4a). Then, writing x(⋅) = x ö (⋅), since the solution of (2.3.1) satisfies

x(tk+1) = x(tk) + ∫
tk+1

tk

h(x(t), u(t)) dt, we see that

ô k = ∆
s

i=1
Σ bi h(x(tk), u[ð k,i]) − ∫

tk+1

tk

h(x(t), u(t)) dt

(A.2a)=
r

j=1
Σ ∫

tk+d j

tk+d j−1

h(x(tk), u[ð k,i j
]) dt −

r

j=1
Σ ∫

tk+d j

tk+d j−1

h(x(t), u(t)) dt ,

becaused j − d j−1 = ∆b
∼

j , u[ð k,i j
] = u[ð k,i] for all i ∈∈ I j , d0 = 0 and, by Assumption 4.1’,

dr = ∆Σr
j=1 b

∼
j = ∆Σs

j=1 b j = ∆. Sinced j − d j−1 > 0 by Assumption 4.1’, we have that

||ô k|| ≤
r

j=1
Σ ∫

tk+d j

tk+d j−1

||h(x(tk), u[ð k,i j
]) − h(x(t), u(t))|| dt

(A.2b)≤
r

j=1
Σ ∫

tk+d j

tk+d j−1

ñ 1[||x(tk) − x(t)|| + ||u[ð k,i j
] − u(t)||] dt ,

whereñ 1 < ∞ is as in Assumption 3.1(a). Now, for t ∈∈ [tk, tk+1], there exists ñ 2 < ∞ such that

- 257 - Appendix A

(A.3)||x(tk) − x(t)|| ≤ ∫
t

tk

||h(x(t), u(t))|| dt ≤ ∫
tk+1

tk

÷
2[||x(t)|| + 1] dt

by Assumption 3.1(a) and the fact thatS is bounded.Also becauseS is bounded, if follows from

Theorem 3.2(ii) that there exists L < ∞ such that ||x(t)|| ≤ ÷ 3[||ø ||+1] ≤ L. Thus, fort ∈∈ [tk, tk+1],

||x(tk) − x(t)|| ≤ ∫
tk+1

tk

÷
2[L +1] dt = ∆÷ 2(L +1). Next, for representationR1, for any k ∈∈ õ ,

j ∈∈ r and t ∈∈ [tk + d j−1, tk + d j), ||u[ù k,i j
] − u(t)|| ≤ ÷ U∆, where ÷ U is used in (2.4.15a), since, by

construction,u ∈∈ U1
N is a Lipschitz continuous polynomial on [tk, tk+1) with Lipschitz constant÷

U independent ofN, ù k,i j
∈∈ [tk, tk + ∆] by Assumption 4.3, and 0≤ d j ≤ ∆ for j = 0, . . . ,r by

Assumption 4.1’ which implies that [tk + d j−1, tk + d j) ⊂ [tk, tk + ∆). Thesame holds for repre-

sentationR2 sinceu ∈∈ L2
N is constant ont ∈∈ [tk + d j−1, tk + d j) and ù k,i j

∈∈ [tk + d j−1, tk + d j] by

Assumption 4.6.Therefore,

(A.4)||ú k|| ≤
r

j=1
Σ ∫

tk+d j

tk+d j−1

÷
1(÷ 2(L + 1) + ÷ U)∆ dt = ÷ ∆

r

j=1
Σ ∫

tk+d j

tk+d j−1

dt = ÷ ∆2 ,

where÷ = ÷ 1(÷ 2(L + 1) + ÷ U). Thiscompletes our proof.

Remark A.2. The result in Lemma A.1 can be shown to hold even if the constraints on ||uKT j ||

in the definition (2.4.15a) ofU1
N were removed if h(x, u) = h

∼
(x) + Bu and the RK method is

orderr . Starting from equation (A.2a), we have

(A.5a)ú k =
r

j=1
Σ ∫

tk+d j

tk+d j−1

h
∼

(x(tk)) − h
∼

(x(t)) dt + ∆
r

j=1
Σ b

∼
j Bu[ù k, j] − ∫

tk+1

tk

Bu(t) dt .

The first term isO(∆2) by the argument already presented.For the remaining part, we see that

(A.5b)B

∆
r

j=1
Σ b

∼
j u[ù k, j] − ∫

∆

0
u(t + tk) dt

= 0 ,

since aû -th order Runge-Kutta method,û ≥ r , integrates the equatioṅx = u(t + tk) exactly for

any r -th order polynomialu.

The next lemma concerns the functionsKk,i = K i (xk, ü k) of the RK method defined by

(2.4.3a,b). Theproof of this result is easily obtained from the proof for Lemma 222A in [8, p.

131].

Lemma A.3 Suppose Assumptions 3.1(a) holds. LetS⊂ B be bounded.Then there exists

L <∞ andN* <∞ such that for allN ≥ N* , ý ∈∈ S ∩ HN , k ∈∈ õ , and i ∈∈ s,

(A.6)||Kk,i − h(xk, u[ù k,i])|| ≤ L∆ .

- 258 - Appendix A

Next, we present a proof of Lemma 4.10.

Proof of Lemma 2.4.10.

(i) Convergence. Let þ = (ÿ , u) ∈∈ S ∩ HN and, for k ∈∈ õ , let ek =. x�k − x� (tk). Then,

||e0|| = 0 ≤ � ∆ and by adding and subtracting terms,

ek+1 = x �k + ∆
s

i=1
Σ bi Kk,i − x� (tk+1)

(A.7)= ek +

x� (tk) − x� (tk+1) + ∆

s

i=1
Σ bi h(x� (tk), u[� k,i])

+ ∆
s

i=1
Σ bi

Kk,i − h(x� (tk), u[� k,i])

.

The norm of the second term in this expression is bounded by� 1∆2 by Lemma A.1 where

� 1 < ∞. Using Lemma A.3, Assumption 3.1(a), and the fact that |bi | ≤ 1 by Assumption 4.1’, we

conclude for the third term that, there exists � 2 < ∞ such that

∆||
s

i=1
Σ bi

Kk,i − h(x� (tk), u[� k,i])

||

≤ ∆
s

i=1
Σ ||Kk,i − h(x�k, u[� k,i])|| + ∆

s

i=1
Σ ||h(x�k, u[� k,i]) − h(x� (tk), u[� k,i])||

(A.8)≤ ∆2Ls + ∆� 2s||ek|| .

Thus, for allk ∈∈ õ ,

(A.9)||ek+1|| ≤ (1 + � 2∆s) ||ek|| + � 3∆2 .

where � 3 = � 1 + Ls. Solving (A.9), we see that for all k ∈∈ õ ,

||ek|| ≤ (1 + � 2∆s)N ||e0|| + � 3′∆ ≤ � ∆. This proves (2.4.18a).

(ii) Rate of Convergence. We prove (2.4.18c) in two steps. First suppose that

HN = H 1
N = IRn × L1

N and letþ 1 = (ÿ , u1) ∈∈ S ∩ H1
N be given. Theexpansion based on higher-

order derivatives (see [8]) needed to prove (2.4.18c) requires smoothness ofh(x, u) between time

steps. Thestated assumptions on the piecewise smoothness ofu1(⋅) provide this smoothness.

Alternatively, the result can also be shown to hold without this assumption onu1 if the differential

equations describing the system dynamics are linear and time-invariant with respect tou since the

RK method provides exact quadrature integration foru ∈∈ LN in this case.In either case, using

the same type of reasoning as in the proof of Lemma A.1, we conclude that there exists � < ∞,

independent ofþ , such that (2.4.18c) holds for representationR1. Next, to prove (2.4.18c) for

representationR2, let HN = H 2
N = IRn × L2

N . Let þ 2 = (ÿ , u2) ∈∈ S ∩ H2
N be given and let

þ 1 = (ÿ , u1) ∈∈ H1
N with u1 = (V1

A,N)−1(V2
A,N(u2)) so thatV1

A,N(u1) = V 2
A,N(u2). Then for any

t ∈∈ [0, 1],

- 259 - Appendix A

||x
�

1(t) − x
�

2(t)|| = ||∫
t

0
h(x

�
1(s), u1(s)) − h(x

�
2(s), u2(s))ds||

≤ ||∫
t

0
h
∼

(x
�

1(s)) − h
∼

(x
�

2(s)) + B(u1(s) − u2(s))ds||

(A.10a)≤ � 1 ∫
t

0
||x
�

1(s) − x
�

2(s)||ds + ||∫
t

0
B(u1(s) − u2(s))ds|| ,

by Assumption 3.1(a). Using the Bellman-Gronwall lemma, we conclude that for any t ∈∈ [0, 1],

(A.10b)||x
�

1(t) − x
�

2(t)|| ≤ � 1e
�

1 ||B|| ||∫
t

0
(u1(s) − u2(s))ds|| .

Now, let ż1(t) =. u1(t), t ∈∈ [0, 1], z1(0) =
�

and ż2(t) =. u2(t), t ∈∈ [0, 1], z2(0) =
�
. Let z1

k andz2
k,

k ∈∈ õ be the computed solution ofz1(t) and z2(t), respectively, using the RK method under con-

sideration. We note thatz1
k = z2

k for all k ∈∈ õ sinceV1
A,N(u1) = V 2

A,N(u2). Then,sinceu1 is an

r -th order polynomial, any � -th order RK method,� ≥ r , integrates ˙z1(t) exactly. Hence,

z1
k = z1(tk), for all k ∈∈ õ . Also, from (2.4.3a,b),

(A.10c)z2
k+1 = z2

k +
s

i=1
Σ bi u2[� k,i] = z2

k +
r

j=1
Σ ∫

tk+d j

tk+d j−1

u2(s)ds = z2(tk+1) ,

since � k, j ∈∈ [tk + d j−1, tk + d j) (by Assumption 4.6) withu2(⋅) constant on these intervals, and

dr = ∆ by Assumption 4.1’.Sincez1
k = z2

k, we must have

(A.10d)z1(tk) − z2(tk) = z1
k − z2

k = 0 , \/ k ∈∈ 	 .

Hence, we conclude that

(A.10e)||∫
tk

0
(u1(s) − u2(s))ds|| = ||z1(tk) − z2(tk)|| = 0 .

Therefore,

(A.10f)||x
�

2(tk) − x
�

2
k || ≤ ||x

�
2(tk) − x

�
1(tk)|| + ||x

�
1(tk) − x

�
1

k || + ||x
�

1
k − x

�
2

k || ≤ � ′/N
 , \/ k ∈∈ 	 ,

where we have used (A.10b) and (A.10e) for the first term, the fact that ||x
�

1(tk) − x
�

1
k || ≤ � 2/N

since (2.4.18c) holds for� 1 ∈∈ S ∩ H1
N by the first part of this discussion for the second term, and

the fact thatx
�

1
k = x

�
2

k sinceu1[� k,i] = u2[� k,i] for the third term.Thus (2.4.18c) holds for repre-

sentationR2 under the stated conditions.

- 260 - Appendix A

Lemma A.4. Suppose that Assumptions 3.1, 4.1’ and 4.3 hold for representationR1 and that

Assumptions 3.1, 4.1’, and 4.6 hold for representationR2. For any S⊂ B bounded, there exists
� <∞ andN* < ∞ such that for any ∈∈ S ∩ HN andN ≥ N* ,

(A.14)||p� k − p� (tk)|| ≤
�
N

, k ∈∈ { 0, . . . ,N } , � ∈∈ q ,

where p� (⋅) is the solution to the adjoint differential equation (2.3.6c) and{ p� k } N
k=0 is the solu-

tion to the corresponding adjoint difference equation (2.5.5d).

Proof. Proceeding as in the proof of Lemma 4.10(i), if we defineek+1 =. p� k+1 − p� (tk+1) we can

show that

(A.15)||ek|| ≤ L1||ek+1|| + L2∆2 , k ∈∈ õ ,

whereL1, L2 < ∞, using(i) the fact that

(A.16)p� k = F x(xk, uk)T pk+1 = p� k+1 + ∆
s

i=1
Σ bi hx(xk, u[� k,i])

T pk+1 + O(∆2) ,

(ii) Lemma A.1 withh(x(tk), u[� k,i]) replaced by−hx(x(tk), u[� k,i])
T p� (tk+1) and (iii) the result

of Lemma 4.10(i) that ||x(tk) − xk|| ≤ � ∆ for all k ∈∈ õ . Now, by Assumption 3.1(b) and Lemma

4.10(i), there exists � 1 < ∞ such that

(A.17)||eN || = ||p�N − p� (1)|| ≤ ||� x(� , xN)T − � x(� , x(1))T || ≤ � 1||xN − x(1)|| ≤ � 2∆ ,

where� 2 = ���
1. Thus, solving (A.15) we conclude that for allk ∈∈ õ ,

(A.18)||ek|| ≤ (L1)N ||eN || + L2′∆ ,

which, with (A.17), proves (A.14).

- 261 - Appendix A

APPENDIX B

This appendix describes several optimal control problem examples that are used in Chapter

3 and the RIOTS user’s manual.

Problem: LQR [42].

u
min J(u) =. ∫

1

0
0. 625x2 + 0. 5xu+ 0. 5u2 dt

subject to

ẋ = 1
2 x + u ; x(0) = 1 .

This problem has an analytic solution given by

u* (t) = − (tanh(1− t) + 0. 5) cosh(1− t) / cosh(1) , t ∈∈ [0, 1] ,

with optimal costJ* = e2 sinh(2) / (1+ e2)2 ≈ 0. 380797.

Problem: Ra yleigh [26,156].

u
min J(u) =. ∫

2.5

0
x2

1 + u2 dt

subject to
ẋ1(t) = x2(t) x1(0) = − 5

ẋ2(t) = − x1(t) + [1. 4 − 0. 14x2
2(t)]x2(t) + 4u(t) x2(0) = − 5

A constrained version of this problem is formed by including the state constraint

x1(2. 5)= 0 .

- 262 - Appendix B

Problem: Bang [3, p. 112].

u,T
min J(u,T) =. T

subject to
ẋ1 = x2 ; x1(0) = 0 , x1(T) = 300

ẋ2 = u ; x2(0) = 0 , x2(T) = 0 ,

and

−2 ≤ u(t) ≤ 1 , \/ t ∈∈ [0,T] .

This problem has an analytic solution which is given by T* = 30 and

0 ≤ t < 20 20 ≤ t ≤ 30

u* (t) 1 −2

x1* (t) t2 / 2 − t2 + 60t − 600

x2* (t) t 60− 2t

Problem: Obstac le [78].

u
min J(u) =. 5x1(2. 9)2 + x2(2. 9)2

subject to
ẋ1 = x2 x1(0) = 1

ẋ2 = u − 0. 1(1+ 2x2
1)x2 x2(0) = 1

−1 ≤ u(t) ≤ 1 , \/ t ∈∈ [0, 1]

1 − 9(x1(t) − 1)2 −

x2(t) − 0. 4

0. 3

2

≤ 0 , \/ t ∈∈ [0, 1]

−0. 8− x2(t) ≤ 0 , \/ t ∈∈ [0, 1] .

- 263 - Appendix B

Problem: God dard Rocket, Maxim um Ascent [157].

u,T
maxJ(u,T) =. h(T)

subject to:

v̇ =
1

m
(u − D(h, v)) −

1

h2
, D(h, v) = 1

2 CD A� 0v2e� (1−h) v(0) = 0

ḣ = v h(0) = 1

ṁ = −
1

c
u m(0) = 1 ; m(T) = 0. 6

0 ≤ u(t) ≤ 3. 5 , \/ t ∈∈ [0,T] .

where � = 500, CD = 0. 05 and A� 0 = 12, 400. The variables used above hav e the following

meanings:

v vertical velocity

h radial altitude above earth (h = 1 is earth’s surface)

m mass of vehicle

u thrust

c specific impulse (impulse per unit mass of fuel burned,c = 0. 5)

� air density (� = � 0e� (1−h))

q dynamic pressure (q = 1
2 � v2)

D drag

The endpoint constraintm(T) = 0. 6means that there is no more fuel left in the rocket. Another

version of this problem includes the trajectory constraint

Aq(t) ≤ 10 , \/ t ∈∈ [0,T] .

This is a upper bound on the dynamic pressure experienced by the rocket during ascent.

- 264 - Appendix B

Problem: Switc h [3, pp. 120-123,37].

u
min J(u) =. ∫

1

0

1
2 u2 dt

subject to
ẋ = v ; x(0) = 0 , x(1) = 0

v̇ = u ; v(0) = 1 , v(1) = −1

x(t) − L ≤ 0 , \/ t ∈∈ [0, 1] ,

with L = 1 / 9. This problem has an analytic solution.For any L such that 0< L ≤ 1 / 6,

the solution isJ* = 4
9L with

0 ≤ t < 3L 3L ≤ t < 1 − 3L 1 − 3L ≤ t ≤ 1

u* (t) − 2
3L (1 − t

3L) 0 − 2
3L (1 − 1−t

3L)

v* (t) (1 − t
3L)2 0 (1 − 1−t

3L)2

x* (t) L(1 − (1 − t
3L)3) L L(1 − (1 − 1−t

3L)3)

- 265 - Appendix B

REFERENCES

1. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathe-

matical Theory of Optimal Processes,John Wiley & Sons, New York (1962). (translated

from Russian by K.N. Trirogoff)

2. E.Polak,Computational Methods in Optimization,Academic Press, New York (1971).

3. A. E. Bryson and Y. Ho, Applied Optimal Control, Hemisphere Publishing Corp. (1975).

(revised printing)

4. O.Stryk and R. Bulirsch, “Direct and indirect methods for trajectory optimization,” Annals

of Operations Research37pp. 357-373 (1992).

5. H. J. Pesch, “Real-time computation of feedback controls for constrained optimal control

problems. Part I: Neighbouring extremals,” Optimal Control Applications and Methods

10pp. 129-145 (1989).

6. D. J. Mook and J. Lew, “Multiple shooting algorithms for jump-discontinuous problems in

optimal control and estimation,” IEEE Trans. Autom. Ctnrl36(8) pp. 979-983 (1991).

7. E.Polak, T. H. Yang, and D. Q. Mayne, “A method of centers based on barrier functions for

solving optimal control problems with continuum state and control constraints,” SIAM J.

Control and Optim.31(1) pp. 159-179 (1993).

8. O. Pironneau and E. Polak, “A dual method for optimal control problems with initial and

final boundary constraints,” SIAM J. Control 11(3) pp. 534-549 (1973).

9. D. Q. Mayne and E. Polak, “Feasible directions algorithms for optimization problems with

equality and inequality constraints,” Math. Prog. 11pp. 67-80 (1976).

10. D. Q. Mayne and E. Polak, “A feasible directions algorithm for optimal control problems

with terminal inequality constraints,” IEEE Trans. Autom. Control 22(5) pp. 741-751.

(1977).

11. D.Q. Mayne and E. Polak, “An exact penalty function algorithm for control problems with

control and terminal equality constraints,” J. Optim. Theory and Appl.32(2) pp. 211-246

(1980). Part 1

12. D.Q. Mayne and E. Polak, “An exact penalty function algorithm for control problems with

control and terminal equality constraints,” J. Optim. Theory and Appl.32(3) pp. 345-364

(1980). Part 2

- 266 -

13. D.Q. Mayne and E. Polak, “An exact penalty function algorithm for control problems with

state and control constraints,” IEEE Trans. Autom. Cntrl32(5) pp. 380-387 (1987).

14. K. Shimizu and S. Ito, “Constrained optimization in Hilbert space and a generalized dual

quasi-Newton algorithm for state-constrained optimal control problems,” IEEE Trans.

Autom. Cntrl. 39(5) pp. 982-986 (1994).

15. P. R. Turner and E. Huntley, “Self-scaling variable metric methods in Hilbert space with

applications to control problems,” Optimal Control Applications and Methods1 pp. 155-166

(1980).

16. H.R.Sirisena and K.S. Tan, “Computation of constrained optimal controls using parameteri-

zation techniques,” IEEE Trans. Autom. Cntrl. 19(4) pp. 431-433 (1974).

17. D.Shih and F. Kung, “Optimal control of deterministic systems via shifted Legendre poly-

nomials,” IEEE Trans. Autom. Cntrl31(5) pp. 451-454 (1986).

18. J.Vlassenbroeck and R. V. Dooren, “A Chebyshev technique for solving nonlinear optimal

control problems,” IEEE Trans. Autom. Cntrl. 33(4) pp. 333-340 (1988).

19. E.R. Edge and W. F. Powers, “Function-space quasi-Newton algorithms for optimal control

problems with bounded controls and singular arcs,” J. Optim. Theory and Appl.20(4) pp.

455-479 (1976).

20. E. Polak and D. Q. Mayne, “First order, strong variations algorithms for optimal control

problems with terminal inequality constriants,” J. Optim. Theory and Appl.16(3/4) pp.

303-325 (1975).

21. C.T. Kelley and E. W. Sachs, “Quasi-Newton methods and unconstrained optimal control

problems,” SIAM J. Control and Optim.25(6) pp. 1503-1516 (1987).

22. J.K. Willoughby and B. L. Pierson, “A constraint-space conjugate gradient method for

function minimization and optimal control problems,” Int. J. Control 14pp. 1121-1135

(1971).

23. A.Miele and T. Wang, “Primal-dual properties of sequential gradient-restoration algorithms

for optimal control problems 2: General problem,” J. Math. Anal. and Appl.119pp. 21-54

(1986).

24. K. C. P. Machielsen, “Numerical Solution of Optimal Control Problems with State Con-

straints by Sequential Quadratic Programming in Function Space,” i n CWI-Tract, Centrum

voor Wiskunde en informatica, Amsterdam, the Netherlands (1988).

25. L. S. Jennings, M. E. Fisher, K. L. Teo, and C. J. Goh, “MISER3: Solving optimal control

problems---an update,” Advances in Engineering software14(13) pp. 190-196 (1991).

- 267 -

26. N.B. Nedeljković, “New algorithms for unconstrained nonlinear optimal control problems,”

IEEE Trans. Autom. Cntrl. 26(4) pp. 868-884 (1981).

27. H. R. Sirisena and F. S. Chou, “Convergence of the control parmaeterization Ritz method

for nonlinear optimal control problems,” J. Optim. Theory and Appl.29(3) pp. 369-382

(1979).

28. W. W. Hager, “The Ritz-Trefftz method for state and control constrained optimal control

problem,” SIAM J. Numer. Anal 12(6) pp. 854-867 (1975).

29. F.H. Mathis and G.W. Reddien, “Ritz-Trefftz approximations in optimal control,” SIAM J.

Control and Optim.17(2) pp. 307-310 (1979).

30. F. H. Mathis, “An L∞ error estimate for the Ritz-Trefftz approximation in optimal control,”

Mathematics and Computers in SimulationXXIII pp. 188-190 (1981).

31. W. W. Hager, “Dual approximations in optimal control,” SIAM J. Control and Optim.

22(3) pp. 423-465 (1984).

32. J.G. Renfro, A. M. Morshedi, and O. A. Asbjornsen, “Simultaneous optimization and solu-

tion of systems described by differential equations,” Comput. chem. Engng. 11(5) pp.

503-517 (1987).

33. J.E. Cuthrell and L. T. Biegler, “On the optimization of differential-algebraic process sys-

tems,” AIChE Journal3(1/2) pp. 1257-1270 (1987).

34. J.E. Cuthrell and L. T. Biegler, “Simultaneous optimization and solution methods for batch

reactor control profiles,” Computers Chem. Engng13pp. 49-62 (1989).

35. C.P. Neuman and A. Sen, “A suboptimal control algorithm for constrained problems using

cubic splines,” Automatica9 pp. 601-613 (1973).

36. G.W. Reddien, “Collocation at Gauss points as a discretization in optimal control,” SIAM J.

Control and Optim.17(2) pp. 298-306 (1979).

37. O.Stryk, “Numerical solution of optimal control problems by direct collocation,” Interna-

tional Series of Numerical Methematics111pp. 129-143 (1993).

38. J.T. Betts and P. D. Frank, “A sparse nonlinear optimization algorithm,” J. Optim. Theory

and Appl. 82(3) pp. 519-541 (1994).

39. G.Pillo, L. Grippo, and F. Lampariello, “A class of structured quasi-Newton algorithms for

optimal control problems,” pp. 101-107 inProc. IFAC Appl. of Nonlinear Prog. to Optim.

and Control, , Palo Alto (1983).

40. C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using nonlinear

- 268 -

programming and collocation,” J. Guidance10pp. 338-342 (1987).

41. O. Stryk, “Numerische Losung optimaler Steuerungsprobleme: Diskretisierung, Parame-

teroptimierung und erechnung der adjungierten Variablen,” Diploma-Math., Munchen Uni-

versity of Technology, VDI Verlag, Germany (1995).

42. W.W. Hager, “Rates of convergence for discrete approximations to unconstrained control

problems,” SIAM J. Numer. Anal. 13(4) pp. 449-472 (1976).

43. E.Polak, “On the use of consistent approximations in the solution of semi-infinite optimiza-

tion and optimal control problems,” Math. Prog. 62pp. 385-415 (1993).

44. J. W. Daniel, The Approximate Minimization of Functionals,Prentice-Hall, New Jersey

(1971).

45. H.Attouch,Variational Convergence for Functions and Operators,Pitman, London (1984).

46. S.Doleck, G. Salinetti, and R. J.B. Wets, “Convergence of functions: equisemicontinuity,”

Tr ansactions of the American Mathematical Society, (276) p. 429 (1983).

47. J.P. Aubin and H. Frankowska,Set-Valued Analysis,Birkhauser, Boston (1990).

48. B.M. Budak, E. M. Berkovich, and E. N. Solov’eva, “Difference approximations in optimal

control problems,” SIAM J. Control 7(1) pp. 18-31 (1969).

49. J.Cullum, “Discrete approximations to continuous optimal control problems,” SIAM J. Con-

trol 7(1) pp. 32-49 (1969).

50. J.Cullum, “An Explicit procedure for discretizing continuous, optimal control problems,”

Journal of Optim. Theory and Appl.8(1) pp. 15-35 (1971).

51. J.W. Daniel, “The Ritz-Galerkin method for abstract optimal control problems,” SIAM J.

Control 11(1) pp. 53-63 (1973).

52. W. E. Bosarge, O. G. Johnson, R. S. McKnight, and W. P. Timlake, “The Ritz-Galerkin pro-

cedure for nonlinear control problems,” SIAM J. Numer. Anal 10(1) pp. 94-111 (1973).

53. B.Sh. Mordukhovich, “On difference approximations of optimal control systems,” J. Appl.

Math. Mech 42pp. 452-461 (1978).

54. B.Sh. Mordukhovich, Methods of approximation in optimal control problems, (in Russian)

1988.

55. E. Polak and L. He, “Rate-preserving discretization strategies for semi-infinite program-

ming and optimal control,” SIAM J. Control and Optim.30(3) pp. 548-572 (1992).

56. V. Veliov, “Second-order discrete approximations to linear differential inclusions,” SIAM J.

Numer. Anal. 29(2) pp. 439-451 (1992).

- 269 -

57. L. He and E. Polak, “An optimal diagonalization strategy for the solution of a class of opti-

mal design problems,” IEEE Trans. on Autom. Contr. 35pp. 258-267 (1990).

58. T. E. Baker and E. Polak, “On the optimal control of systems described by evolution equa-

tions,” SIAM J. Control and Optim.32pp. 224-260 (1994).

59. F. H. Clarke, Optimization and Nonsmooth Analysis,Wiley-Interscience, New York (1983).

60. HaimBrezis,Analyse Fonctionnelle, Masson, Paris (1983).(in French)

61. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations,John Wiley and

Sons, England (1987).

62. J.D. Lambert,Numerical Methods for Ordinary Differential Systems,John Wiley and Sons,

England (1991).

63. Carlde Boor, A Practical Guide to Splines,Springer-Verlag, New York (1978).

64. E.Polak and L. He, “Unified steerable phase I-phase II method of feasible directions for

semi-infinite optimization,” J. Optim. Theory and Appl.69(1) pp. 83-107 (1991).

65. C.Lawrence, J. L. Zhou, and A. L. Tits, “User’s guide for CFSQP version 2.1: A C Code

for solving (large scale) constrained nonlinear (minimax) optimization problems,”

TR-94-16rl, Institute for Systems Researce, Univ. of Maryland (1994).

66. U.Ascher and G. Bader, “Stability of collocation at Gaussian points,” SIAM J. Numer. Anal.

23(2) pp. 412-422 (1986).

67. R. Schere and H Turke, “Reflected and transposed Runge-Kutta methods,” BIT 23pp.

262-266 (1983).

68. J.M. Lane an R. F. Riesenfeld, “A theoretical development for the computer generation of

piecewise polynomial surfaces,” IEEE Trans. Patern Anal. and Machine Inteligence2 pp.

35-46 (1980).

69. W. Boehm, “Inserting new knots into B-spline curves,” CAD12pp. 199-216 (1980).

70. R.Qu and J. A. Gregory, “A subdivision algorithm for non-uniform B-splines,” pp. 432-436

in Approximation Theory, Spline Functions and Applications, ed. S. P. Singh (ed.), Kluwer

Academic Publishers, Boston (1992).

71. W. Rudin,Real and Complex Analysis,McGraw-Hill, New York (1987).

72. G.H. Golub and C. F. Loan,Matrix Computations,Johns Hopkins University Press (1989).

(second edition)

73. A. A. Goldstein, “Convex programming in Hilbert space,” Bull. Amer. Math. Soc. 70pp.

709-710 (1964).

- 270 -

74. E.S. Levitin and B. T. Polyak, “Constrained minimization problems,” USSR Comput. Math.

Math. Phys.6 pp. 1-50 (1966).(English transl. inZh. Vychisl. Mat. i Mat. Fiz., vv. 6, pp.

787-823, 1965)

75. D.P. Bertsekas, “On the Goldstein-Levitin-Poljak gradient projection method,” IEEE Trans.

Autom. Cntrl. 21(2) pp. 174-184 (1976).

76. D. P. Bertsekas, “Projected Newton methods for optimization problems with simple con-

straints,” SIAM J. Control and Optim.20(2) pp. 221-246 (1982).

77. J. C. Dunn, “A projected Newton method for minimization problems with nonlinear

inequality constraints,” Numer. Math. 53pp. 377-409 (1988).

78. V. H. Quintana and E. J. Davison, “Clipping-off gradient algorithms to compute optimal

controls with constrained magnitude,” Int. J. Control 20(2) pp. 243-255 (1974).

79. A. R. Conn, N. Gould, and P. L. Toint, “Global convergence of a class of trust region algo-

rithms for optimization with simple bounds,” SIAM J. Numer. Anal. 25pp. 433-460 (1988).

80. A.R. Conn, N. Gould, and P. L. Toint, “A globally convergent augmented Lagrangian algo-

rithm for optimization with general constraints and simple bounds,” SIAM J. Numer. Anal.

28(2) pp. 545-572 (1991).

81. R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A l imited memory algorithm for bound con-

strained optimization,” Technical Report NAM-08, EECS Dept., Northwestern Univ. (1994).

82. J.J. More and G. Toraldo, “Algorithms for bound constrained quadratic programming prob-

lems,” Numer. Math. 55pp. 377-400 (1989).

83. P. H. Calamai and J. J. More, “Projected gradient methods for linearly constrained prob-

lems,” Math. Prog. 39pp. 93-116 (1987).

84. C.T. Kelley and E. W. Sachs, “Solution of optimal control problems by a pointwise pro-

jected Newton method,” SIAM J. Contr. and Optim. 43pp. 1731-1757 (1995).

85. E.Polak, R. W. Sargent, and D. J. Sebastian, “On the convergence of sequential minimiza-

tion algorithms,” J. Optim. Theory and Appl.14pp. 439-442 (1974).

86. J.Nocedal, “Updating quasi-Newton matrices with limited storage,” Mathematics of Com-

putation35(151) pp. 773-782 (1980).

87. M. J. D. Powell, “Restart procedures for the conjugate gradient method,” Math. Prog.

12pp. 241-254 (1977).

88. D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley Pub. Co., Reading,

Massachusetts (1984).(second edition)

- 271 -

89. D. P. Bertsekas,Constrained Optimization and Lagrange Multiplier Methods,Academic

Press, New York (1982).

90. D.G. Luenberger, “Convergence rate of a penalty-function scheme,” J. Optim. Theory and

Appl. 7(1) pp. 39-51 (1971).

91. J.C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gradient methods

for optimization,” SIAM J. Optimization2(1) pp. 21-42 (1992).

92. D. P. Bertsekas, “Partial conjugate graident methods for a class of optimal control prob-

lems,” IEEE Trans. Autom. Cntrl. 19(3) pp. 209-217 (1974).

93. J.C. Dunn and D. P. Bertsekas, “Efficient dynamic programming implementations of New-

ton’s method for unconstrained optimal control problems,” J. Optim. Theory and Appl.

63(1) pp. 23-38 (1989).

94. D.C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimiza-

tion,” Math. Prog. 45pp. 503-528 (1989).

95. D. F. Shanno and K. H. Phua, “Matrix conditioning and nonlinear optimization,” Math.

Prog. 14pp. 149-160 (1978).

96. X.Zou, I. M. Navon, M. Berger, K. H. Phua, T. Schlick, and F. X. Dimet, “Numerical expe-

rience with limited-memory quasi-Newton and truncated newton methods,” SIAM J. Optim.

3(3) pp. 582-608 (1993).

97. W. W. Hager, “Lipschitz continuity for constrained processes,” SIAM J. Control and Optim.

17(3) pp. 321-338 (1979).

98. W. W. Hager and G. Strang, “Free boundaries and finite elements in one dimension,” Math.

Comp. 29(132) pp. 1020-1031 (1975).

99. J.E. Higgins and E. Polak, “An � -active barrier-function method for solving minimax prob-

lems,” Appl. Math. Optim.23pp. 275-297 (1991).

100. M.E. Hosea and L. F. Shampine, “Estimating the error of the classic Runge-Kutta formula,”

Applied Math. and Comp.66pp. 217-226 (1994).

101. R.Eng, “Error estimates for Runge-Kutta type solutions to systems of ordinary differential

equations,” Computer Journal12(2) pp. 166-170 (1969).

102. F. Ceschnino and J. Kuntzmann,Numerical Solution of Initial Value Problems,Prentice-

Hall, Englewood Cliffs, NJ (1966).(English transl.)

103. L. F. Shampine and H. A. Watts, “Comparing error estimators for Runge-Kutta methods,”

Mathematics of Computation25(115) pp. 445-455 (1971).

- 272 -

104. C.Jansch and M. Paus, “Aircraft trajectory optimization with direct collocation using mov-

able gridpoints,” pp. 262-267 inProc. American Control Conference, , San Diago (1990).

105. J. T. Betts and W. P. Huffman, “Path-constrained trajectory optimization using sparse

sequential quadratic programming,” J. Guidance, Control, and Dynamics16(1) pp. 59-68

(1993).

106. F. B. Lee and L. Markus,Foundations of Optimal Control Theory, John Wiley, New York

(1967).

107. V. M. Alekseev, V. M. Tikhomirov, and V. M. Fomin,Optimal Control, Consultants Bureau,

New York (1987). (translated from Russian by V.M. Volosov)

108. J.C. Dunn, “Second-order optimality conditions in sets ofL∞ functions with range in a

polyhedron.,” SIAM J. Control and Optim.33(5) pp. 1603-1635 (1995).

109. J.C. Dunn, “L2 sufficient conditions for end-constrained optimal control problems with

inputs in a polyhedron.,” pre-print, (1996).

110. J.C. Dunn, “OnL2 sufficient conditions and the gradient projection method for optimal

control problems.,” SIAM J. Control and Optim., (July, 1996).

111. J.C. Dunn and T. Tian, “Variants of the Kuhn-Tucker sufficient conditions in cones of non-

negative functions,” SIAM J. Control and Optim.30(6) pp. 1361-1384 (1992).

112. H. Maurer, “First and second order sufficient optimality conditions in mathematical pro-

gramming and optimal control,” pp. 163-177 inMathematical Programming Study, North-

Holland Publishing Co. (1981).

113. A.L. Dontchev, W. W. Hager, A. B. Poore, and B. Yang, “Optimality, stability, and conver-

gence in nonlinear control,” Applied Math. and Optim.31(3) pp. 297-326 (1995).

114. H.J. Pesch, “Real-time computation of feedback controls for constrained optimal control

problems. Part II: A Correction Method Based on Multiple Shooting,” Optimal Control

Applications and Methods10pp. 147-171 (1989).

115. R.Bulirsch, E. Nerz, H. J. Pesch, and O. Stryk, “Combining direct and indirect methods in

optimal control: range maximization of a hang glider,” pp. 273-288 inInternational Series

of Numerical Mathematics, (1993).

116. D.J. Bell and D. H. Jacobson,Singular Optimal Control Problems,Academic Press, Lon-

don (1975).

117. J.P. McDanell and W. F. Powers, “Necessary conditions for joining optimal singular and

nonsingular subarcs,” SIAM J. Control 9 pp. 161-173 (1971).

- 273 -

118. B.Goh, “Compact forms of the generalized Legendre-Clebsch conditions and the computa-

tion of singular control trajectories,” pp. 3410-3413 inProc. ACC, , Seattle, WA (June

1995).

119. H.Seywald, “Trajectory optimization based on differential inclusion,” J. Guidance, Control

and Dynamics17(3) pp. 480-487 (1994).

120. Y. Chen and J. Huang, “A numerical algorithm for singular optimal control synthesis using

continuation methods,” Optimal Control Appl. and Methods15pp. 223-236 (1994).

121. S.A. Dadebo and K. B. McAuley, “On the computation of optimal singular controls,” pp.

150-155 inProceedings of the 4th IEEE Conference of Control Applications, (Sept. 1995).

122. K.L. Teo and L. S. Jennings, “Optimal control with a cost on changing control,” J. Optim.

Theory and Appl.68pp. 335-357 (1991).

123. R.T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM J. Control

and Optim.14(5) pp. 877-898 (1976).

124. R.T. Rockafellar, “Augmented Lagrangians and applications of the proximal point algo-

rithm in convex programming,” Mathematics of Operations Research 1(2) pp. 97-116

(1976).

125. P. E. Gill, W. M. Murray, M. A. Saunders, and M. H. Wright, “User’s guide for NPSOL

(Version 4.0): A Fortran package for nonlinear programming,” technical report SOL 86-2,

Systems Opitimzation Laboratory, Stanford University (1986).

126. J.Cullum, “Finite-dimensional approximations of state-constrained continuous optimal con-

trol problems,” SIAM J. Control 10(4) pp. 649-670 (1972).

127. K. Radhakrishnan and A. C. Hindmarsh, “Description and use of LSODE, the Livermore

Solver for Ordinary Differential Equations,” NASA Reference Publ. 1327 (1993).

128. L.R. Petzold, “Automatic selection of methods for solving stiff and nonstiff systems of dif-

ferential equations,” SIAM J. Sci. Stat. Comput.4 pp. 136-148 (1983).

129. P. E. Gill, W. Murray, and M. H. Wright,Practical Optimization,Academic Press, London

(1981).

130. L.T. Biegler and J. E. Cuthrell, “Improved infeasible path optimization for sequential mod-

ular simulators--II: the optimization algorithm,” Computers & Chemical Engineering

9(3) pp. 257-267 (1985).

131. A.Griewank, D. Juedes, and J. Utke, ADOL-C: A package for the automatic differentiation

of algorithms written in C/C++, Argonne National Laboratory,

ftp://info.mcs.anl.gov/pub/ADOLC (December 1993).

- 274 -

132. A. Griewank, “On automatic differentiation,” Preprint MCS-P10-1088, Argonne National

Laboratory, ftp://info.mcs.anl.gov/pub/tech_reports/reports (October 1988).

133. D. M. Murray and S. J. Yakowitz, “Dif ferential dynamic programming and Newton’s

method for discrete optimal control problems,” Journal of Optim. Theory and Appl.

43(3) pp. 395-414 (1984).

134. J.F. A. Pantoja, “Differential dynamic programming and Newton’s method,” Int. J. Control

47(5) pp. 1539-1553 (1988).

135. S.K. Mitter, “Successive approximation methods for the solution of optimal control prob-

lems,” Automatica3 pp. 135-149 (1966).

136. D.H. Jacobson and D. Q. Mayne,Differential Dynamic Programming, American Elsevier

Pub. Co., New York (1970).

137. A.Rakshit and S. Sen, “Sequential rank-one/rank-two updates for quasi-Newton differential

dynamic programing,” Optimal Control Appl. and Methods11pp. 95-101 (1990).

138. J.F. A. Pantoja and D. Q. Mayne, “Sequential quadratic programming algorithm for discrete

optimal control problems with control inequality constraints,” Int. J. Control 53(4) pp.

823-836 (1991).

139. T. F. Coleman and A. Liao, “An efficient trust region method for unconstrained discrete-

time optimal control problems,” Computational Optimization and Applications4 pp. 47-66

(1995).

140. HenrikJonson, “Newton Method for Solving Non-linear Optimal Control Problems with

Genereal constraints,” Ph.D. Dissertation, Linkoping Studies in Science and Technology

(1983).

141. R.W. H. Sargent, “A new SQP algorithm for large-scale nonlinear programming,” C95 36,

Centre for Process Systems Engineering, Imperial College, London (1995).

142. A. R. Conn, N. Gould, and P. L. Toint, “LANCELOT: A Fortran Package for Large-Scale

Nonlinear Optimization,” i n Springer Series in Computational Mathematics, Springer-

Verlag, Berlin (1992).

143. A. Griewank and P. L. Toint, “Local convergence analysis for partitioned quasi-Newton

updates,” Numer. Math. 39pp. 429-448 (1982).

144. P. L. Toint, “Global convergence of the partitioned BFGS algorithm for convex partially

separable optimization,” Math. Prog. 36pp. 290-306 (1986).

145. M. J. D. Powell, “A fast algorithm for nonlinearly constrained optimization calculations,”

pp. 144-157 inLecture Notes in Mathematics 630, Numerical Analysis, ed. G.A. Watson

- 275 -

(ed.), Springer-Verlag (1978).

146. R. Fletcher, “Resolving degeneracy in quadratic programming,” Annals of Operations

Research47pp. 307-334 (1993).

147. W. Murray, “Algorithms for large nonlinear problems,” pp. 172-185 inMathematical Pro-

gramming--State of the Art, (1994).

148. J.Nocedal, “Recent advances in large-scale nonlinear optimization,” pp. 208-219 inMathe-

matical Programming--State of the Art, (1994).

149. A. R. Conn, N. Gould, and P. L. Toint, “Large-scale nonlinear constrained optimization: a

current survey,” pp. P 287-332 inAlgorithms for Continuous Optimization, ed. E. Spedicator

(ed.), Kluwer Academic Publishers, Boston (1994).

150. J.L. Zhou and A. L. Tits, “An SQP algorithm for finely discretized continuous minimax

problems and other minimax problems with many objective functions,” to appear in SIAM

J. Optimization, ().

151. U.Ascher, R. Mattheij, and R. Russell,Numerical Solution of Boundary Value Problems for

Ordinary Differential Equations,Prentice Hall, Englewood Cliffs, NJ (1988).

152. S.S. Oren, “Perspectives on self-scaling variable metric algorithms,” J. Optim. Theory and

Appl. 37(2) pp. 137-147 (1982).

153. F.H. Mathis and G.W. Reddien, “Difference approximations to control problems with func-

tional arguments,” SIAM J. Control and Optim.16(3) pp. 436-449 (1978).

154. D.I. Jones and J. W. Finch, “Comparison of optimization algortihms,” Int. J. Control 40pp.

747-761 (1984).

155. S.Strand and J. G. Balchen, “A Comparison of Constrained Optimal Control Algorithms,”

pp. 439-447 inIFAC 11th Triennial World Congress, , Estonia, USSR (1990).

156. D.Talwar and R. Sivan, “An Efficient Numerical Algorithm for the Solution of a Class of

Optimal Control Problems,” IEEE Trans. Autom. Cntrl. 34(12) pp. 1308-1311 (1989).

157. H.Seywald and E. M. Cliff, “Goddard Problem in Presence of a Dynamic Pressure Limit,”

J. Guidance, Control and Dynamics16(4) pp. 776-781 (1993).

- 276 -

